咨询与建议

限定检索结果

文献类型

  • 20,858 篇 会议
  • 105 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,005 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,618 篇 工学
    • 11,054 篇 计算机科学与技术...
    • 2,651 篇 机械工程
    • 2,251 篇 软件工程
    • 914 篇 光学工程
    • 885 篇 电气工程
    • 528 篇 控制科学与工程
    • 476 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,246 篇 理学
    • 1,144 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,141 篇 computer vision
  • 2,886 篇 training
  • 2,839 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,492 篇 cameras
  • 1,433 篇 three-dimensiona...
  • 1,433 篇 feature extracti...
  • 1,366 篇 shape
  • 1,360 篇 face recognition
  • 1,242 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 984 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 899 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,982 篇 英文
  • 10 篇 中文
  • 5 篇 土耳其文
  • 5 篇 其他
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21006 条 记 录,以下是4951-4960 订阅
排序:
Informative and Consistent Correspondence Mining for Cross-Domain Weakly Supervised Object Detection
Informative and Consistent Correspondence Mining for Cross-D...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hou, Luwei Zhang, Yu Fu, Kui Li, Jia Beihang Univ Sch Comp Sci & Engn State Key Lab Virtual Real Technol & Syst Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China SenseTime Res Beijing Peoples R China
Cross-domain weakly supervised object detection aims to adapt object-level knowledge from a fully labeled source domain dataset (i.e., with object bounding boxes) to train object detectors for target domains that are ... 详细信息
来源: 评论
Dual Residual Networks Leveraging the Potential of Paired Operations for Image Restoration  32
Dual Residual Networks Leveraging the Potential of Paired Op...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Xing Suganuma, Masanori Sun, Zhun Okatani, Takayuki Tohoku Univ Grad Sch Informat Sci Sendai Miyagi Japan RIKEN Ctr AIP Tokyo Japan
In this paper, we study design of deep neural networks for tasks of image restoration. We propose a novel style of residual connections dubbed "dual residual connection", which exploits the potential of pair... 详细信息
来源: 评论
DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses
DVMNet: Computing Relative Pose for Unseen Objects Beyond Hy...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Chen Zhang, Tong Dang, Zheng Salzmann, Mathieu Ecole Polytech Fed Lausanne Lausanne Switzerland ClearSpace SA Renens Switzerland
Determining the relative pose of an object between two images is pivotal to the success of generalizable object pose estimation. Existing approaches typically approximate the continuous pose representation with a larg... 详细信息
来源: 评论
Driver state monitor from DELPHI
Driver state monitor from DELPHI
收藏 引用
conference on computer vision and pattern recognition
作者: Edenborough, N Hammoud, R Harbach, A Ingold, A Kisacanin, B Malawey, P Newman, T Scharenbroch, G Skiver, S Smith, M Wilhelm, A Witt, G Yoder, E Zhang, H Delphi Electronics and Safety United States
We present an automotive-grade, real-time, vision-based Driver State Monitor. Upon detecting and tracking the driver's facial features, the system analyzes eye-closures and head pose to infer his/her fatigue or di... 详细信息
来源: 评论
3DAC: Learning Attribute Compression for Point Clouds
3DAC: Learning Attribute Compression for Point Clouds
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Fang, Guangchi Hu, Qingyong Wang, Hanyun Xu, Yiling Guo, Yulan Sun Yat Sen Univ Shenzhen Campus Guangzhou Peoples R China Univ Oxford Oxford England Informat Engn Univ Zhengzhou Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China Natl Univ Def Technol Changsha Peoples R China
We study the problem of attribute compression for large-scale unstructured 3D point clouds. Through an in-depth exploration of the relationships between different encoding steps and different attribute channels, we in... 详细信息
来源: 评论
Tracking multiple mouse contours (without too many samples)
Tracking multiple mouse contours (without too many samples)
收藏 引用
conference on computer vision and pattern recognition
作者: Branson, K Belongie, S Univ Calif San Diego Dept Comp Sci & Engn La Jolla CA 92093 USA
We present a particle filtering algorithm for robustly tracking the contours of multiple deformable objects through severe occlusions. Our algorithm combines a multiple blob tracker with a contour tracker in a manner ... 详细信息
来源: 评论
KNN Local Attention for Image Restoration
KNN Local Attention for Image Restoration
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lee, Hunsang Choi, Hyesong Sohn, Kwanghoon Min, Dongbo Yonsei Univ Seoul South Korea Ewha W Univ Seoul South Korea
Recent works attempt to integrate the non-local operation with CNNs or Transformer, achieving remarkable performance in image restoration tasks. The global similarity, however, has the problems of the lack of locality... 详细信息
来源: 评论
Model Barrier: A Compact Un-Transferable Isolation Domain for Model Intellectual Property Protection
Model Barrier: A Compact Un-Transferable Isolation Domain fo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Lianyu Wang, Meng Zhang, Daoqiang Fu, Huazhu Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing Peoples R China Agcy Sci Technol & Res STAR IHPC Singapore 138632 Singapore
As scientific and technological advancements result from human intellectual labor and computational costs, protecting model intellectual property (IP) has become increasingly important to encourage model creators and ... 详细信息
来源: 评论
DeshadowNet: A Multi-context Embedding Deep Network for Shadow Removal  30
DeshadowNet: A Multi-context Embedding Deep Network for Shad...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Qu, Liangqiong Tian, Jiandong He, Shengfeng Tang, Yandong Lau, Rynson W. H. Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China City Univ Hong Kong Hong Kong Hong Kong Peoples R China South China Univ Technol Guangzhou Guangdong Peoples R China
Shadow removal is a challenging task as it requires the detection/annotation of shadows as well as semantic understanding of the scene. In this paper, we propose an automatic and end-to-end deep neural network (Deshad... 详细信息
来源: 评论
Towards Unsupervised Domain Generalization
Towards Unsupervised Domain Generalization
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Xingxuan Zhou, Linjun Xu, Renzhe Cui, Peng Shen, Zheyan Liu, Haoxin Tsinghua Univ Dept Comp Sci Beijing Peoples R China
Domain generalization (DG) aims to help models trained on a set of source domains generalize better on unseen target domains. The performances of current DG methods largely rely on sufficient labeled data, which are u... 详细信息
来源: 评论