咨询与建议

限定检索结果

文献类型

  • 20,858 篇 会议
  • 107 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,007 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,620 篇 工学
    • 11,056 篇 计算机科学与技术...
    • 2,651 篇 机械工程
    • 2,251 篇 软件工程
    • 914 篇 光学工程
    • 887 篇 电气工程
    • 528 篇 控制科学与工程
    • 476 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,246 篇 理学
    • 1,144 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,143 篇 computer vision
  • 2,886 篇 training
  • 2,841 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,493 篇 cameras
  • 1,433 篇 three-dimensiona...
  • 1,433 篇 feature extracti...
  • 1,366 篇 shape
  • 1,360 篇 face recognition
  • 1,242 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 985 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 900 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,984 篇 英文
  • 10 篇 中文
  • 5 篇 土耳其文
  • 5 篇 其他
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21008 条 记 录,以下是4991-5000 订阅
排序:
See through Gradients: Image Batch Recovery via GradInversion
See through Gradients: Image Batch Recovery via GradInversio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yin, Hongxu Mallya, Arun Vahdat, Arash Alvarez, Jose M. Kautz, Jan Molchanov, Pavlo NVIDIA Santa Clara CA 95051 USA
Training deep neural networks requires gradient estimation from data batches to update parameters. Gradients per parameter are averaged over a set of data and this has been presumed to be safe for privacy-preserving t... 详细信息
来源: 评论
Rethinking Depth Estimation for Multi-View Stereo: A Unified Representation
Rethinking Depth Estimation for Multi-View Stereo: A Unified...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Peng, Rui Wang, Rongjie Wang, Zhenyu Lai, Yawen Wang, Ronggang Peking Univ Sch Elect & Comp Engn Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Depth estimation is solved as a regression or classification problem in existing learning-based multi-view stereo methods. Although these two representations have recently demonstrated their excellent performance, the... 详细信息
来源: 评论
Open-set Fine-grained Retrieval via Prompting vision-Language Evaluator
Open-set Fine-grained Retrieval via Prompting Vision-Languag...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Shijie Chang, Jianlong Li, Haojie Wang, Zhihui Ouyang, Wanli Tian, Qi Dalian Univ Technol Int Sch Informat Sci & Engn Dalian Peoples R China Huawei Cloud & AI Shenzhen Peoples R China Shandong Univ Sci & Technol Coll Comp & Engn Qingdao Peoples R China Univ Sydney Sense Time Comp Vis Res Grp Sydney NSW Australia
Open-set fine-grained retrieval is an emerging challenge that requires an extra capability to retrieve unknown subcategories during evaluation. However, current works focus on close-set visual concepts, where all the ... 详细信息
来源: 评论
Towards real-world navigation with deep differentiable planners
Towards real-world navigation with deep differentiable plann...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ishida, Shu Henriques, Joao F. Univ Oxford Visual Geometry Grp Oxford England
We train embodied neural networks to plan and navigate unseen complex 3D environments, emphasising real-world deployment. Rather than requiring prior knowledge of the agent or environment, the planner learns to model ... 详细信息
来源: 评论
A regularized spectral algorithm for Hidden Markov Models with applications in computer vision
A regularized spectral algorithm for Hidden Markov Models wi...
收藏 引用
2012 ieee conference on computer vision and pattern recognition, cvpr 2012
作者: Minh, Ha Quang Cristani, Marco Perina, Alessandro Murino, Vittorio Genoa 16163 Italy Microsoft Research WA United States
Hidden Markov Models (HMMs) are among the most important and widely used techniques to deal with sequential or temporal data. Their application in computer vision ranges from action/gesture recognition to videosurveil... 详细信息
来源: 评论
Clusformer: A Transformer based Clustering Approach to Unsupervised Large-scale Face and Visual Landmark recognition
Clusformer: A Transformer based Clustering Approach to Unsup...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xuan-Bac Nguyen Duc Toan Bui Chi Nhan Duong Bui, Tien D. Luu, Khoa VinAI Res Hanoi Vietnam Concordia Univ Montreal PQ Canada Univ Arkansas Fayetteville AR 72701 USA
The research in automatic unsupervised visual clustering has received considerable attention over the last couple years. It aims at explaining distributions of unlabeled visual images by clustering them via a paramete... 详细信息
来源: 评论
recognition BY USING AN ACTIVE SPACE-VARIANT SENSOR
RECOGNITION BY USING AN ACTIVE SPACE-VARIANT SENSOR
收藏 引用
1994 ieee computer-Society conference on computer vision and pattern recognition
作者: TISTARELLI, M UNIV GENOA DISTINTEGRATED ADV ROBOT LABI-16145 GENOAITALY
The problem of object recognition is addressed. In the literature this task has been generally considered in a 'passive' perspective, where everything is static and there is no definite relation between the ob... 详细信息
来源: 评论
M2SGD: Learning to Learn ImportantWeights
M<SUP>2</SUP>SGD: Learning to Learn ImportantWeights
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kuo, Nicholas I-Hsien Harandi, Mehrtash Fourrier, Nicolas Walder, Christian Ferraro, Gabriela Suominen, Hanna Australian Natl Univ RSCS Canberra ACT Australia Monash Univ ECSE Clayton Vic Australia CSIRO Data61 Canberra ACT Australia Vole Univ Leonard de Vinci Paris France Univ Turku Dept Future Technol Turku Finland
Meta-learning concerns rapid knowledge acquisition. One popular approach cast optimisation as a learning problem and it has been shown that learnt neural optimisers updated base learners more quickly than their hand-c... 详细信息
来源: 评论
Few-Shot Object recognition from Machine-Labeled Web Images  30
Few-Shot Object Recognition from Machine-Labeled Web Images
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xu, Zhongwen Zhu, Linchao Yang, Yi Univ Technol Sydney CAI Sydney NSW Australia
With the tremendous advances made by Convolutional Neural Networks (ConvNets) on object recognition, we can now easily obtain adequately reliable machine-labeled annotations easily from predictions by off-the-shelf Co... 详细信息
来源: 评论
Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking  31
Learning Attentions: Residual Attentional Siamese Network fo...
收藏 引用
31st ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Qiang Teng, Zhu Xing, Junliang Gao, Jin Hu, Weiming Maybank, Stephen University of Chinese Academy of Sciences Beijing China School of Computer and Information Technology Beijing Jiaotong University Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China Department of Computer Science and Information Systems Birkbeck College University of London UK
Offline training for object tracking has recently shown great potentials in balancing tracking accuracy and speed. However, it is still difficult to adapt an offline trained model to a target tracked online. This work... 详细信息
来源: 评论