咨询与建议

限定检索结果

文献类型

  • 20,860 篇 会议
  • 104 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,006 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,619 篇 工学
    • 11,055 篇 计算机科学与技术...
    • 2,652 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 884 篇 电气工程
    • 529 篇 控制科学与工程
    • 477 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,140 篇 computer vision
  • 2,886 篇 training
  • 2,840 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,492 篇 cameras
  • 1,433 篇 three-dimensiona...
  • 1,433 篇 feature extracti...
  • 1,366 篇 shape
  • 1,360 篇 face recognition
  • 1,243 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 984 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 899 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,981 篇 英文
  • 10 篇 中文
  • 7 篇 其他
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21007 条 记 录,以下是681-690 订阅
排序:
ALINA: Advanced Line Identification and Notation Algorithm
ALINA: Advanced Line Identification and Notation Algorithm
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Khan, Mohammed Abdul Hafeez Ganeriwala, Parth Bhattacharyya, Siddhartha Neogi, Natasha Muthalagu, Raja Florida Inst Technol Melbourne FL 32901 USA NASA Langley Res Ctr Hampton VA 23665 USA BITS Pilani Dubai Campus Dubai U Arab Emirates
Labels are the cornerstone of supervised machine learning algorithms. Most visual recognition methods are fully supervised, using bounding boxes or pixel-wise segmentations for object localization. Traditional labelin... 详细信息
来源: 评论
Grounding Counterfactual Explanation of Image Classifiers to Textual Concept Space
Grounding Counterfactual Explanation of Image Classifiers to...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kim, Siwon Oh, Jinoh Lee, Sungjin Yu, Seunghak Doe, Jaeyoung Taghavi, Tara Seoul Natl Univ Data Sci & Artificial Intelligence Lab Seoul South Korea Amazon Alexa AI Seattle WA USA NAVER Search US Seongnam South Korea
Concept-based explanation aims to provide concise and human-understandable explanations of an image classifier. However, existing concept-based explanation methods typically require a significant amount of manually co... 详细信息
来源: 评论
Explaining Image Classifiers with Multiscale Directional Image Representation
Explaining Image Classifiers with Multiscale Directional Ima...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kolek, Stefan Windesheim, Robert Andrade-Loarca, Hector Kutyniok, Gitta Levie, Ron Ludwig Maximilians Univ Munchen Dept Math Munich Germany Univ Tromso Dept Phys & Technol Tromso Norway Technion Israel Inst Technol Dept Math Haifa Israel
Image classifiers are known to be difficult to interpret and therefore require explanation methods to understand their decisions. We present ShearletX, a novel mask explanation method for image classifiers based on th... 详细信息
来源: 评论
GeneCIS: A Benchmark for General Conditional Image Similarity
GeneCIS: A Benchmark for General Conditional Image Similarit...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Vaze, Sagar Carion, Nicolas Misra, Ishan Meta AI FAIR Menlo Pk CA 94025 USA Univ Oxford VGG Oxford England
We argue that there are many notions of 'similarity' and that models, like humans, should be able to adapt to these dynamically. This contrasts with most representation learning methods, supervised or self-sup... 详细信息
来源: 评论
Filtering, Distillation, and Hard Negatives for vision-Language Pre-Training
Filtering, Distillation, and Hard Negatives for Vision-Langu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Radenovic, Filip Dubey, Abhimanyu Kadian, Abhishek Mihaylov, Todor Vandenhende, Simon Patel, Yash Wen, Yi Ramanathan, Vignesh Mahajan, Dhruv Meta AI New York NY 10003 USA Czech Tech Univ Prague Czech Republic
vision-language models trained with contrastive learning on large-scale noisy data are becoming increasingly popular for zero-shot recognition problems. In this paper we improve the following three aspects of the cont... 详细信息
来源: 评论
Are Data-driven Explanations Robust against Out-of-distribution Data?
Are Data-driven Explanations Robust against Out-of-distribut...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Tang Qiao, Fenuchun Ma, Mengmeng Peng, Xi Univ Delaware Newark DE 19716 USA
As black-box models increasingly power high-stakes applications, a variety of data-driven explanation methods have been introduced. Meanwhile, machine learning models are constantly challenged by distributional shifts... 详细信息
来源: 评论
Learning Steerable Function for Efficient Image Resampling
Learning Steerable Function for Efficient Image Resampling
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Jiacheng Chen, Chang Huang, Wei Lang, Zhiqiang Song, Fenglong Yan, Youliang Xiong, Zhiwei Univ Sci & Technol China Chengdu Peoples R China Huawei Noahs Ark Lab Montreal PQ Canada
Image resampling is a basic technique that is widely employed in daily applications. Existing deep neural networks (DNNs) have made impressive progress in resampling performance. Yet these methods are still not the pe... 详细信息
来源: 评论
Comprehensive and Delicate: An Efficient Transformer for Image Restoration
Comprehensive and Delicate: An Efficient Transformer for Ima...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Haiyu Gou, Yuanbiao Li, Boyun Peng, Dezhong Lv, Jiancheng Peng, Xi Sichuan Univ Coll Comp Sci Chengdu Peoples R China
vision Transformers have shown promising performance in image restoration, which usually conduct window- or channel-based attention to avoid intensive computations. Although the promising performance has been achieved... 详细信息
来源: 评论
vision Transformers are Parameter-Efficient Audio-Visual Learners
Vision Transformers are Parameter-Efficient Audio-Visual Lea...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lin, Yan-Bo Sung, Yi-Lin Lei, Jie Bansal, Mohit Bertasius, Gedas UNC Chapel Hill Dept Comp Sci Chapel Hill NC 27514 USA
vision transformers (ViTs) have achieved impressive results on various computer vision tasks in the last several years. In this work, we study the capability of frozen ViTs, pretrained only on visual data, to generali... 详细信息
来源: 评论
STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action recognition
STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Ac...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Xiaoyu Huang, Po-Yao Liang, Junwei de Melo, Celso M. Hauptmann, Alexander Carnegie Mellon Univ Pittsburgh PA 15213 USA Meta AI FAIR New York NY USA HKUST Guangzhou Guangzhou Peoples R China DEVCOM Army Res Lab Adelphi MD USA
We study the problem of human action recognition using motion capture (MoCap) sequences. Unlike existing techniques that take multiple manual steps to derive standardized skeleton representations as model input, we pr... 详细信息
来源: 评论