咨询与建议

限定检索结果

文献类型

  • 10 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 11 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 7 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 生物工程
  • 1 篇 理学
    • 1 篇 物理学
    • 1 篇 生物学

主题

  • 4 篇 machine learning
  • 3 篇 training
  • 2 篇 hardware
  • 2 篇 graphics process...
  • 1 篇 internet of thin...
  • 1 篇 tools
  • 1 篇 learning systems
  • 1 篇 scalability
  • 1 篇 quantum computin...
  • 1 篇 deep neural netw...
  • 1 篇 computer archite...
  • 1 篇 network topology
  • 1 篇 neural networks
  • 1 篇 convolution
  • 1 篇 convergence
  • 1 篇 hybrid cloud
  • 1 篇 advisory system
  • 1 篇 runtime and wait...
  • 1 篇 benchmark testin...
  • 1 篇 computers

机构

  • 1 篇 univ antwerp ime...
  • 1 篇 usc information ...
  • 1 篇 university of te...
  • 1 篇 oak ridge natl l...
  • 1 篇 ctr computat & t...
  • 1 篇 univ tennessee k...
  • 1 篇 unity health tor...
  • 1 篇 usc informat sci...
  • 1 篇 ibm res yorktown...
  • 1 篇 vector institute
  • 1 篇 oak ridge nation...
  • 1 篇 university of te...
  • 1 篇 university of an...
  • 1 篇 university of te...
  • 1 篇 ibm tj watson re...

作者

  • 1 篇 gangotree chakma
  • 1 篇 park seung-jong
  • 1 篇 cong guojing
  • 1 篇 ayromlou sana
  • 1 篇 rose garrett
  • 1 篇 latre steven
  • 1 篇 spedalieri feder...
  • 1 篇 jewell john
  • 1 篇 shams shayan
  • 1 篇 tavakoli fatemeh
  • 1 篇 patton robert m.
  • 1 篇 jack dongarra
  • 1 篇 miguel camelo
  • 1 篇 young steven r.
  • 1 篇 rodrigues eduard...
  • 1 篇 tizzei leonardo ...
  • 1 篇 schuman catherin...
  • 1 篇 jeroen famaey
  • 1 篇 piotr luszczek
  • 1 篇 garrett rose

语言

  • 11 篇 英文
检索条件"任意字段=2016 Machine Learning in HPC Environments, MLHPC 2016"
11 条 记 录,以下是1-10 订阅
排序:
Proceedings of mlhpc 2016: machine learning in hpc environments - Held in conjunction with SC 2016: The International Conference for High Performance Computing, Networking, Storage and Analysis
Proceedings of MLHPC 2016: Machine Learning in HPC Environme...
收藏 引用
2016 machine learning in hpc environments, mlhpc 2016
The proceedings contain 7 papers. The topics discussed include: communication quantization for data-parallel training of deep neural networks;performance-portable autotuning of OpenCL kernels for convolutional layers ...
来源: 评论
A Scalable Parallel Q-learning Algorithm for Resource Constrained Decentralized Computing environments
A Scalable Parallel Q-Learning Algorithm for Resource Constr...
收藏 引用
2nd Workshop on machine learning in hpc environments (mlhpc)
作者: Camelo, Miguel Famaey, Jeroen Latre, Steven Univ Antwerp IMEC Dept Math & Comp Sci Middelheimlaan 1 B-2020 Antwerp Belgium
The Internet of Things (IoT) is more and more becoming a platform for mission critical applications with stringent requirements in terms of response time and mobility. Therefore, a centralized High Performance Computi... 详细信息
来源: 评论
A Study of Complex Deep learning Networks on High Performance, Neuromorphic, and Quantum Computers
A Study of Complex Deep Learning Networks on High Performanc...
收藏 引用
2nd Workshop on machine learning in hpc environments (mlhpc)
作者: Potok, Thomas E. Schuman, Catherine D. Young, Steven R. Patton, Robert M. Spedalieri, Federico Liu, Jeremy Yao, Ke-Thia Rose, Garrett Chakma, Gangotree Oak Ridge Natl Lab 1 Bethel Valley Rd Oak Ridge TN 37830 USA USC Informat Sci Inst Marina Del Rey CA USA Univ Tennessee Knoxville TN USA
Current Deep learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly conne... 详细信息
来源: 评论
A Scalable Parallel Q-learning Algorithm for Resource Constrained Decentralized Computing environments
A Scalable Parallel Q-Learning Algorithm for Resource Constr...
收藏 引用
Workshop on machine learning in hpc environments (mlhpc)
作者: Miguel Camelo Jeroen Famaey Steven Latré University of Antwerp-imec Antwerp Belgium
The Internet of Things (IoT) is more and more becoming a platform for mission critical applications with stringent requirements in terms of response time and mobility. Therefore, a centralized High Performance Computi... 详细信息
来源: 评论
A Study of Complex Deep learning Networks on High Performance, Neuromorphic, and Quantum Computers
A Study of Complex Deep Learning Networks on High Performanc...
收藏 引用
Workshop on machine learning in hpc environments (mlhpc)
作者: Thomas E. Potok Catherine D. Schuman Steven R. Young Robert M. Patton Federico Spedalieri Jeremy Liu Ke-Thia Yao Garrett Rose Gangotree Chakma Oak Ridge National Laboratory USC Information Sciences Institute Marina del Rey CA USA University of Tennessee Knoxville TN USA
Current Deep learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly conne... 详细信息
来源: 评论
Practical Efficiency of Asynchronous Stochastic Gradient Descent
Practical Efficiency of Asynchronous Stochastic Gradient Des...
收藏 引用
2nd Workshop on machine learning in hpc environments (mlhpc)
作者: Bhardwaj, Onkar Cong, Guojing IBM TJ Watson Res Yorktown Hts NY 10598 USA
Stochastic gradient descent (SGD) and its distributed variants are essential to leverage modern computing resources for large-scale machine learning tasks. ASGD [1] is one of the most popular asynchronous distributed ... 详细信息
来源: 评论
Evaluation of Deep learning Frameworks over Different hpc Architectures  37
Evaluation of Deep Learning Frameworks over Different HPC Ar...
收藏 引用
37th IEEE International Conference on Distributed Computing Systems (ICDCS)
作者: Shams, Shayan Platania, Richard Lee, Kisung Park, Seung-Jong Ctr Computat & Technol Div Comp Sci & Engn Baton Rouge LA 70803 USA
Recent advances in deep learning have enabled researchers across many disciplines to uncover new insights about large datasets. Deep neural networks have shown applicability to image, time-series, textual, and other d... 详细信息
来源: 评论
A Comprehensive View of Personalized Federated learning on Heterogeneous Clinical Datasets  9
A Comprehensive View of Personalized Federated Learning on H...
收藏 引用
9th machine learning for Healthcare Conference, MLHC 2024
作者: Tavakoli, Fatemeh Emerson, D.B. Ayromlou, Sana Jewell, John Krishnan, Amrit Zhang, Yuchong Verma, Amol Razak, Fahad Vector Institute Toronto Canada Unity Health Toronto Toronto Canada
Federated learning (FL) is increasingly being recognized as a key approach to overcoming the data silos that so frequently obstruct the training and deployment of machine-learning models in clinical settings. This wor... 详细信息
来源: 评论
OpenCL caffe: Accelerating and enabling a cross platform machine learning framework  16
OpenCL caffe: Accelerating and enabling a cross platform mac...
收藏 引用
4th International Workshop on OpenCL, IWOCL 2016
作者: Gu, Junli Liu, Yibing Gao, Yuan Zhu, Maohua
Deep neural networks (DNN) achieved significant breakthrough in vision recognition in 2012 and quickly became the leading machine learning algorithm in Big Data based large scale object recognition applications. The s... 详细信息
来源: 评论
Job placement advisor based on turnaround predictions for hpc hybrid clouds
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2017年 67卷 35-46页
作者: Cunha, Renato L. F. Rodrigues, Eduardo R. Tizzei, Leonardo P. Netto, Marco A. S. IBM Res Yorktown Hts NY 10598 USA
Several companies and research institutes are moving their CPU-intensive applications to hybrid High Performance Computing (hpc) cloud environments. Such a shift depends on the creation of software systems that help u... 详细信息
来源: 评论