咨询与建议

限定检索结果

文献类型

  • 22 篇 会议

馆藏范围

  • 22 篇 电子文献
  • 0 种 纸本馆藏

日期分布

主题

  • 2 篇 linear regressio...
  • 1 篇 rubin causal mod...
  • 1 篇 assignment mecha...
  • 1 篇 statistical meth...
  • 1 篇 quantitative tra...
  • 1 篇 selective infere...
  • 1 篇 variable selec-t...
  • 1 篇 model selection ...
  • 1 篇 recursive partit...
  • 1 篇 model selection
  • 1 篇 statins
  • 1 篇 model selection ...
  • 1 篇 pharmacoepidemio...
  • 1 篇 case-control sam...
  • 1 篇 case-control stu...
  • 1 篇 secondary traits
  • 1 篇 confidence set
  • 1 篇 estimating equat...
  • 1 篇 subgroups
  • 1 篇 statistical powe...

机构

  • 1 篇 biostatistics an...
  • 1 篇 university of me...
  • 1 篇 california polyt...
  • 1 篇 department of pu...
  • 1 篇 institute for cl...
  • 1 篇 school of statis...
  • 1 篇 department of he...
  • 1 篇 department of bi...
  • 1 篇 斯坦福大学
  • 1 篇 heilbrunn depart...
  • 1 篇 university of ca...
  • 1 篇 department of po...
  • 1 篇 eli lilly and co...
  • 1 篇 university of me...
  • 1 篇 department of st...
  • 1 篇 julius center fo...
  • 1 篇 biostatistics at...
  • 1 篇 department of me...
  • 1 篇 department of st...
  • 1 篇 school of statis...

作者

  • 8 篇 yuhong yang
  • 2 篇 yi yang
  • 2 篇 davide ferrari
  • 1 篇 夏璐
  • 1 篇 alex dmitrienko
  • 1 篇 jason d.lee
  • 1 篇 nan bi
  • 1 篇 xuming he
  • 1 篇 kit c.b.roes
  • 1 篇 jonathan taylor
  • 1 篇 peter c.austin
  • 1 篇 ying wei
  • 1 篇 d.y.lin
  • 1 篇 steven teerenstr...
  • 1 篇 mengling liu
  • 1 篇 hongwei zhao
  • 1 篇 jonathan denne
  • 1 篇 yongli zhang
  • 1 篇 xiaoyu song
  • 1 篇 luliana ionita-l...

语言

  • 22 篇 英文
检索条件"任意字段=2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会"
22 条 记 录,以下是1-10 订阅
排序:
Cross-Validation for Optimal and Reproducible Statistical Learning
Cross-Validation for Optimal and Reproducible Statistical Le...
收藏 引用
2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会
作者: Yongli Zhang Yuhong Yang
来源: 评论
Considerations on trial design and data analysis for multi-regional clinical trials
Considerations on trial design and data analysis for multi-r...
收藏 引用
2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会
作者: Hui Quan Biostatistics and Programming Department of Sanofi
来源: 评论
Variable Selection Deviation for High-Dimensional Model Selection
Variable Selection Deviation for High-Dimensional Model Sele...
收藏 引用
2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会
作者: Ying Nan Yuhong Yang
来源: 评论
Confidence Sets for Variable Selection
Confidence Sets for Variable Selection
收藏 引用
2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会
作者: Davide Ferrari Yuhong Yang University of Melbourne & University of Minnesota
来源: 评论
?q-Aggregation and Adaptive High-dimensional Minimax Estimation
?q-Aggregation and Adaptive High-dimensional Minimax Estimat...
收藏 引用
2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会
作者: Yuhong Yang School of Statistics University of Minnesota
来源: 评论
Sparsity Oriented Importance Learning
Sparsity Oriented Importance Learning
收藏 引用
2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会
作者: Chenglong Ye Yi Yang Wenjing Yang Yuhong Yang
来源: 评论
Accuracy Estimation of High-dimensional Variable Selection Methods
Accuracy Estimation of High-dimensional Variable Selection M...
收藏 引用
2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会
作者: Yanjia Yu Yi Yang Yuhong Yang
来源: 评论
EXACT POST-SELECTION INFERENCE,WITH APPLICATION TO THE LASSO
EXACT POST-SELECTION INFERENCE,WITH APPLICATION TO THE LASSO
收藏 引用
2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会
作者: JASON D.LEE DENNIS L.SUN YUEKAI SUN JONATHAN E.TAYLOR University of California Berkeley California Polytechnic State University Stanford University
来源: 评论
Model Selection:Uncertainty,Diagnostics,and Improving Reproducibility
Model Selection:Uncertainty,Diagnostics,and Improving Reprod...
收藏 引用
2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会
作者: Yuhong Yang Institute of Mathematical Statistics
Theoretical and methodological studies on model selection have flourished in the past *** practice of model selection in real world,however,is better described by"wild west".Indeed,it contributes significant...
来源: 评论
Statistical Issues of Post Model Selection Inference
Statistical Issues of Post Model Selection Inference
收藏 引用
2017第七届临床评价方法与应用国际研讨会暨生物统计国际研讨会
作者: 夏璐 斯坦福大学统计系
A typical statistical/learning procedure is composed of two ***,under some model selection criteria,a data analyst will select a desirable model based on the observed ***,given the selected model,the data analyst will...
来源: 评论