咨询与建议

限定检索结果

文献类型

  • 1,638 篇 会议
  • 26 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,667 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,172 篇 工学
    • 833 篇 电气工程
    • 703 篇 计算机科学与技术...
    • 256 篇 信息与通信工程
    • 154 篇 软件工程
    • 90 篇 控制科学与工程
    • 78 篇 仪器科学与技术
    • 54 篇 生物医学工程(可授...
    • 47 篇 电子科学与技术(可...
    • 37 篇 生物工程
    • 23 篇 机械工程
    • 22 篇 光学工程
    • 6 篇 动力工程及工程热...
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 测绘科学与技术
    • 4 篇 材料科学与工程(可...
  • 316 篇 理学
    • 162 篇 物理学
    • 94 篇 数学
    • 60 篇 系统科学
    • 48 篇 统计学(可授理学、...
    • 41 篇 生物学
  • 89 篇 医学
    • 67 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
    • 7 篇 医学技术(可授医学...
  • 49 篇 管理学
    • 32 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 9 篇 农学
    • 9 篇 作物学
  • 8 篇 法学
    • 7 篇 社会学
  • 3 篇 教育学
  • 2 篇 经济学

主题

  • 332 篇 machine learning
  • 182 篇 signal processin...
  • 154 篇 deep learning
  • 142 篇 signal processin...
  • 142 篇 training
  • 113 篇 estimation
  • 87 篇 feature extracti...
  • 72 篇 field programmab...
  • 71 篇 modulation
  • 68 篇 ofdm
  • 68 篇 clocks
  • 68 篇 filtration
  • 63 篇 neural networks
  • 63 篇 optimization
  • 60 篇 conferences
  • 48 篇 data models
  • 47 篇 computational mo...
  • 47 篇 kernel
  • 47 篇 machine learning...
  • 46 篇 support vector m...

机构

  • 11 篇 ieee
  • 7 篇 southeast univ n...
  • 6 篇 natl chiao tung ...
  • 6 篇 oregon state uni...
  • 5 篇 korea univ dept ...
  • 5 篇 mila quebec ai i...
  • 5 篇 middle east tech...
  • 4 篇 georgia inst tec...
  • 4 篇 princeton univ p...
  • 4 篇 georgia inst tec...
  • 4 篇 acad sinica res ...
  • 4 篇 aalborg univ dep...
  • 4 篇 yale univ dept g...
  • 4 篇 aristotle univ t...
  • 4 篇 univ cent florid...
  • 4 篇 department of el...
  • 4 篇 univ oulu ctr ma...
  • 4 篇 purple mountain ...
  • 4 篇 imperial coll lo...
  • 4 篇 nanyang technol ...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 simeone osvaldo
  • 8 篇 tefas anastasios
  • 7 篇 jenssen robert
  • 7 篇 erdogmus deniz
  • 7 篇 wang wenwu
  • 7 篇 larsen jan
  • 7 篇 anastasios tefas
  • 7 篇 raich raviv
  • 7 篇 principe jose c.
  • 7 篇 passalis nikolao...
  • 7 篇 hansen lars kai
  • 6 篇 sarkka simo
  • 6 篇 nikolaos passali...
  • 6 篇 sayed ali h.
  • 6 篇 plumbley mark d.
  • 5 篇 shi qingjiang
  • 5 篇 jen-tzung chien
  • 5 篇 sharon gannot
  • 5 篇 vural elif

语言

  • 1,651 篇 英文
  • 12 篇 中文
  • 3 篇 其他
  • 1 篇 土耳其文
检索条件"任意字段=2017 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2017"
1667 条 记 录,以下是41-50 订阅
排序:
learning APPROXIMATE NEURAL ESTIMATORS FOR WIRELESS CHANNEL STATE INFORMATION
LEARNING APPROXIMATE NEURAL ESTIMATORS FOR WIRELESS CHANNEL ...
收藏 引用
27th ieee international workshop on machine learning for signal processing (mlsp)
作者: O'Shea, Tim Karra, Kiran Clancy, T. Charles Virginia Tech Dept Elect & Comp Engn Arlington VA 22203 USA
Estimation is a critical component of synchronization in wireless and signal processing systems. There is a rich body of work on estimator derivation, optimization, and statistical characterization from analytic syste... 详细信息
来源: 评论
RENYI ENTROPY BASED MUTUAL INFORMATION FOR SEMI-SUPERVISED BIRD VOCALIZATION SEGMENTATION
RENYI ENTROPY BASED MUTUAL INFORMATION FOR SEMI-SUPERVISED B...
收藏 引用
27th ieee international workshop on machine learning for signal processing (mlsp)
作者: Thakur, Anshul Abrol, Vinayak Sharma, Pulkit Rajan, Padmanabhan Indian Inst Technol Sch Comp & Elect Engn Mandi India
In this paper we describe a semi-supervised algorithm to segment bird vocalizations using matrix factorization and Renyi entropy based mutual information. Singular value decomposition (SVD) is applied on pooled time-f... 详细信息
来源: 评论
learning GUIDED CONVOLUTIONAL NEURAL NETWORKS FOR CROSS-RESOLUTION FACE RECOGNITION
LEARNING GUIDED CONVOLUTIONAL NEURAL NETWORKS FOR CROSS-RESO...
收藏 引用
27th ieee international workshop on machine learning for signal processing (mlsp)
作者: Fu, Tzu-Chien Chiu, Wei-Chen Wang, Yu-Chiang Frank Acad Sinica Res Ctr Informat Technol Innovat Taipei Taiwan Natl Chiao Tung Univ Hsinchiu Taiwan
Cross-resolution face recognition tackles the problem of matching face images with different resolutions. Although state-of-the-art convolutional neural network (CNN) based methods have reported promising performances... 详细信息
来源: 评论
THE LINEAR PROCESS MIXTURE MODEL
THE LINEAR PROCESS MIXTURE MODEL
收藏 引用
23rd ieee international workshop on machine learning for signal processing (mlsp)
作者: Palmer, Jason A. Kreutz-Delgado, Ken Makeig, Scott Univ Calif San Diego Swartz Ctr Computat Neurosci La Jolla CA 92093 USA Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA
We consider a likelihood framework for analyzing multivariate time series as mixtures of independent linear processes. We propose a flexible, Newton algorithm for estimating impulse response functions associated with ... 详细信息
来源: 评论
DEEP DIVERGENCE-BASED CLUSTERING
DEEP DIVERGENCE-BASED CLUSTERING
收藏 引用
27th ieee international workshop on machine learning for signal processing (mlsp)
作者: Kampffmeyer, M. Lokse, S. Bianchi, F. M. Livi, L. Salberg, A. -B. Jenssen, R. UiT Arctic Univ Norway UiT Machine Learning Grp Tromso Norway Univ Exeter Dept Comp Sci Exeter Devon England Norwegian Comp Ctr Oslo Norway
A promising direction in deep learning research is to learn representations and simultaneously discover cluster structure in unlabeled data by optimizing a discriminative loss function. Contrary to supervised deep lea... 详细信息
来源: 评论
MIML-AI: Mixed-supervision multi-instance multi-label learning with auxiliary information
MIML-AI: Mixed-supervision multi-instance multi-label learni...
收藏 引用
2017 ieee international workshop on machine learning for signal processing, mlsp 2017
作者: Nguyen, Tarn Raich, Raviv Fern, Xiaoli Z. Pham, Anh T. School of EECS Oregon State University CorvallisOR97331-5501 United States
Manual labeling of individual instances is time-consuming. This is commonly resolved by labeling a bag-of-instances with a single common label or label-set. However, this approach is still time-costly for large datase... 详细信息
来源: 评论
NEAREST NEIGHBOR-BASED IMPORTANCE WEIGHTING
NEAREST NEIGHBOR-BASED IMPORTANCE WEIGHTING
收藏 引用
22nd ieee international workshop on machine learning for signal processing (mlsp)
作者: Loog, Marco Delft Univ Technol Pattern Recognit Lab NL-2600 AA Delft Netherlands
Importance weighting is widely applicable in machine learning in general and in techniques dealing with data co-variate shift problems in particular. A novel, direct approach to determine such importance weighting is ... 详细信息
来源: 评论
UPPER BOUND PERFORMANCE OF SEMI-DEFINITE PROGRAMMING FOR LOCALISATION IN INHOMOGENEOUS MEDIA
UPPER BOUND PERFORMANCE OF SEMI-DEFINITE PROGRAMMING FOR LOC...
收藏 引用
27th ieee international workshop on machine learning for signal processing (mlsp)
作者: Nadimi, E. S. Blanes-Vidal, V. Univ Southern Denmark Maersk Mc Kinney Moller Inst Embodied Syst Robot & Learning Campusvej 55 DK-5230 Odense Denmark
In this paper, we regarded an absorbing inhomogeneous medium as an assembly of thin layers having different propagation properties. We derived a stochastic model for the refractive index and formulated the localisatio... 详细信息
来源: 评论
DEEP REINFORCEMENT learning BASED ENERGY BEAMFORMING FOR POWERING SENSOR NETWORKS  29
DEEP REINFORCEMENT LEARNING BASED ENERGY BEAMFORMING FOR POW...
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Ozcelikkale, Ayca Koseoglu, Mehmet Srivastava, Mani Ahlen, Anders Uppsala Univ Signals & Syst Uppsala Sweden Hacettepe Univ Dept Comp Sci Ankara Turkey Univ Calif Dept Elect & Comp Engn Davis CA USA
We focus on a wireless sensor network powered with an energy beacon, where sensors send their measurements to the sink using the harvested energy. The aim of the system is to estimate an unknown signal over the area o... 详细信息
来源: 评论
MINI-BATCH STOCHASTIC APPROACHES FOR ACCELERATED MULTIPLICATIVE UPDATES IN NONNEGATIVE MATRIX FACTORISATIONWITH BETA-DIVERGENCE  26
MINI-BATCH STOCHASTIC APPROACHES FOR ACCELERATED MULTIPLICAT...
收藏 引用
26th ieee international workshop on machine learning for signal processing (mlsp)
作者: Serizel, Romain Essid, Slim Richard, Gael Univ Paris Saclay LTCI CNRS Telecom ParisTech F-75013 Paris France
Nonnegative matrix factorisation (NMF) with beta-divergence is a popular method to decompose real world data. In this paper we propose mini-batch stochastic algorithms to perform NMF efficiently on large data matrices... 详细信息
来源: 评论