咨询与建议

限定检索结果

文献类型

  • 1,638 篇 会议
  • 24 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,665 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,170 篇 工学
    • 831 篇 电气工程
    • 703 篇 计算机科学与技术...
    • 255 篇 信息与通信工程
    • 154 篇 软件工程
    • 90 篇 控制科学与工程
    • 78 篇 仪器科学与技术
    • 54 篇 生物医学工程(可授...
    • 47 篇 电子科学与技术(可...
    • 37 篇 生物工程
    • 23 篇 机械工程
    • 22 篇 光学工程
    • 6 篇 动力工程及工程热...
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 测绘科学与技术
    • 4 篇 材料科学与工程(可...
  • 316 篇 理学
    • 162 篇 物理学
    • 94 篇 数学
    • 60 篇 系统科学
    • 48 篇 统计学(可授理学、...
    • 41 篇 生物学
  • 89 篇 医学
    • 67 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
    • 7 篇 医学技术(可授医学...
  • 49 篇 管理学
    • 32 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 9 篇 农学
    • 9 篇 作物学
  • 8 篇 法学
    • 7 篇 社会学
  • 3 篇 教育学
  • 2 篇 经济学

主题

  • 331 篇 machine learning
  • 182 篇 signal processin...
  • 154 篇 deep learning
  • 142 篇 signal processin...
  • 142 篇 training
  • 113 篇 estimation
  • 87 篇 feature extracti...
  • 72 篇 field programmab...
  • 71 篇 modulation
  • 68 篇 ofdm
  • 68 篇 clocks
  • 68 篇 filtration
  • 63 篇 neural networks
  • 63 篇 optimization
  • 60 篇 conferences
  • 48 篇 data models
  • 47 篇 kernel
  • 47 篇 machine learning...
  • 46 篇 support vector m...
  • 46 篇 computational mo...

机构

  • 11 篇 ieee
  • 7 篇 southeast univ n...
  • 6 篇 natl chiao tung ...
  • 6 篇 oregon state uni...
  • 5 篇 korea univ dept ...
  • 5 篇 mila quebec ai i...
  • 5 篇 middle east tech...
  • 4 篇 georgia inst tec...
  • 4 篇 princeton univ p...
  • 4 篇 georgia inst tec...
  • 4 篇 acad sinica res ...
  • 4 篇 aalborg univ dep...
  • 4 篇 yale univ dept g...
  • 4 篇 aristotle univ t...
  • 4 篇 univ cent florid...
  • 4 篇 department of el...
  • 4 篇 univ oulu ctr ma...
  • 4 篇 purple mountain ...
  • 4 篇 imperial coll lo...
  • 4 篇 nanyang technol ...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 simeone osvaldo
  • 8 篇 tefas anastasios
  • 7 篇 jenssen robert
  • 7 篇 erdogmus deniz
  • 7 篇 wang wenwu
  • 7 篇 larsen jan
  • 7 篇 anastasios tefas
  • 7 篇 raich raviv
  • 7 篇 principe jose c.
  • 7 篇 passalis nikolao...
  • 7 篇 hansen lars kai
  • 6 篇 sarkka simo
  • 6 篇 nikolaos passali...
  • 6 篇 sayed ali h.
  • 6 篇 plumbley mark d.
  • 5 篇 shi qingjiang
  • 5 篇 jen-tzung chien
  • 5 篇 sharon gannot
  • 5 篇 vural elif

语言

  • 1,649 篇 英文
  • 12 篇 中文
  • 3 篇 其他
  • 1 篇 土耳其文
检索条件"任意字段=2017 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2017"
1665 条 记 录,以下是61-70 订阅
排序:
MULTINOMIAL SAMPLING FOR HIERARCHICAL CHANGE-POINT DETECTION  30
MULTINOMIAL SAMPLING FOR HIERARCHICAL CHANGE-POINT DETECTION
收藏 引用
30th ieee international workshop on machine learning for signal processing (mlsp)
作者: Romero-Medrano, Lorena Moreno-Munoz, Pablo Artes-Rodriguez, Antonio Univ Carlos III Madrid Dept Signal Theory & Commun Madrid Spain Gregorio Maranon Hlth Res Inst Madrid Spain
Bayesian change-point detection, together with latent variable models, allows to perform segmentation over high-dimensional time-series. We assume that change-points lie on a lower-dimensional manifold where we aim to... 详细信息
来源: 评论
UNSUPERVISED learning OF MARKOV-SWITCHING STOCHASTIC VOLATILITY WITH AN APPLICATION TO MARKET DATA  26
UNSUPERVISED LEARNING OF MARKOV-SWITCHING STOCHASTIC VOLATIL...
收藏 引用
26th ieee international workshop on machine learning for signal processing (mlsp)
作者: Gorynin, Ivan Monfrini, Emmanuel Pieczynski, Wojciech Univ Paris Saclay CNRS Telecom SudParis SAMOVAR 9 Rue Charles Fourrier F-91000 Evry France
We introduce a new method for estimating the regime-switching stochastic volatility models from the historical prices. Our methodology is based on a novel version of the assumed density filter (ADF). We estimate the s... 详细信息
来源: 评论
A PROXIMAL METHOD FOR THE K-SVD DICTIONARY learning
A PROXIMAL METHOD FOR THE K-SVD DICTIONARY LEARNING
收藏 引用
23rd ieee international workshop on machine learning for signal processing (mlsp)
作者: Peng, Guan-Ju Hwang, Wen-Liang Acad Sinica Inst Informat Sci Taipei Taiwan
In this paper, we propose a dictionary updating method and show numerically that it can converge to a dictionary that outperforms the dictionary derived by the K-SVD method. The proposed method is based on the proxima... 详细信息
来源: 评论
learning WITH THE KERNEL signal TO NOISE RATIO
LEARNING WITH THE KERNEL SIGNAL TO NOISE RATIO
收藏 引用
22nd ieee international workshop on machine learning for signal processing (mlsp)
作者: Gomez-Chova, Luis Camps-Valls, Gustavo Univ Valencia Image Proc Lab E-46003 Valencia Spain
This paper presents the application of the kernel signal to noise ratio (KSNR) in the context of feature extraction to general machine learning and signal processing domains. The proposed approach maximizes the signal... 详细信息
来源: 评论
VISUALIZING AND IMPROVING SCATTERING NETWORKS
VISUALIZING AND IMPROVING SCATTERING NETWORKS
收藏 引用
27th ieee international workshop on machine learning for signal processing (mlsp)
作者: Cotter, Fergal Kingsbury, Nick Univ Cambridge Dept Engn Signal Proc Grp Cambridge England
Scattering Transforms (or ScatterNets) introduced by Mallat in [1] are a promising start into creating a well-defined feature extractor to use for pattern recognition and image classification tasks. They are of partic... 详细信息
来源: 评论
learning EMBEDDINGS FOR SPEAKER CLUSTERING BASED ON VOICE EQUALITY
LEARNING EMBEDDINGS FOR SPEAKER CLUSTERING BASED ON VOICE EQ...
收藏 引用
27th ieee international workshop on machine learning for signal processing (mlsp)
作者: Lukic, Yanick X. Vogt, Carlo Duerr, Oliver Stadelmann, Thilo Zurich Univ Appl Sci Winterthur Switzerland
Recent work has shown that convolutional neural networks (CNNs) trained in a supervised fashion for speaker identification are able to extract features from spectrograms which can be used for speaker clustering. These... 详细信息
来源: 评论
MINI-BATCH STOCHASTIC APPROACHES FOR ACCELERATED MULTIPLICATIVE UPDATES IN NONNEGATIVE MATRIX FACTORISATIONWITH BETA-DIVERGENCE  26
MINI-BATCH STOCHASTIC APPROACHES FOR ACCELERATED MULTIPLICAT...
收藏 引用
26th ieee international workshop on machine learning for signal processing (mlsp)
作者: Serizel, Romain Essid, Slim Richard, Gael Univ Paris Saclay LTCI CNRS Telecom ParisTech F-75013 Paris France
Nonnegative matrix factorisation (NMF) with beta-divergence is a popular method to decompose real world data. In this paper we propose mini-batch stochastic algorithms to perform NMF efficiently on large data matrices... 详细信息
来源: 评论
DIFFUSION STRATEGIES FOR IN-NETWORK PRINCIPAL COMPONENT ANALYSIS  24
DIFFUSION STRATEGIES FOR IN-NETWORK PRINCIPAL COMPONENT ANAL...
收藏 引用
ieee international workshop on machine learning for signal processing (mlsp)
作者: Ghadban, Nisrine Honeine, Paul Mourad-Chehade, Farah Francis, Clovis Farah, Joumana Univ Technol Troyes CNRS Inst Charles Delaunay Troyes France Univ Libanaise Fac Genie Beirut Lebanon Holy Spirit Univ Kaslik Fac Engn Dept Telecommun Kaslik Lebanon
This paper deals with the principal component analysis in networks, where it is improper to compute the sample covariance matrix. To this end, we derive several in-network strategies to estimate the principal axes, in... 详细信息
来源: 评论
A SUBSPACE learning ALGORITHM FOR MICROWAVE SCATTERING signal CLASSIFICATION WITH APPLICATION TO WOOD QUALITY ASSESSMENT
A SUBSPACE LEARNING ALGORITHM FOR MICROWAVE SCATTERING SIGNA...
收藏 引用
22nd ieee international workshop on machine learning for signal processing (mlsp)
作者: Yu, Yinan McKelvey, Tomas Chalmers Dept Signals & Syst S-41296 Gothenburg Sweden
A classification algorithm based on a linear subspace model has been developed and is presented in this paper. To further improve the classification results, the full linear subspace of each class is split into subspa... 详细信息
来源: 评论
A CONSENSUS-BASED DECENTRALIZED EM FOR A MIXTURE OF FACTOR ANALYZERS  24
A CONSENSUS-BASED DECENTRALIZED EM FOR A MIXTURE OF FACTOR A...
收藏 引用
ieee international workshop on machine learning for signal processing (mlsp)
作者: Whipps, Gene T. Ertin, Emre Moses, Randolph L. Ohio State Univ ECE Dept Columbus OH 43210 USA
We consider the problem of decentralized learning of a target appearance manifold using a network of sensors. Sensor nodes observe an object from different aspects and then, in an unsupervised and distributed manner, ... 详细信息
来源: 评论