咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 13 篇 期刊文献

馆藏范围

  • 113 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 103 篇 工学
    • 81 篇 电气工程
    • 42 篇 计算机科学与技术...
    • 31 篇 信息与通信工程
    • 7 篇 软件工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 光学工程
    • 4 篇 仪器科学与技术
    • 3 篇 机械工程
    • 3 篇 生物工程
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
  • 58 篇 医学
    • 58 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 药学(可授医学、理...
  • 16 篇 理学
    • 11 篇 物理学
    • 6 篇 生物学
    • 5 篇 数学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 文学
    • 3 篇 外国语言文学
  • 2 篇 管理学
    • 2 篇 图书情报与档案管...

主题

  • 8 篇 deep learning
  • 6 篇 image coding
  • 6 篇 visualization
  • 6 篇 image processing
  • 6 篇 image classifica...
  • 5 篇 convolutional ne...
  • 4 篇 super-resolution
  • 4 篇 neural networks
  • 4 篇 optimization
  • 3 篇 image fusion
  • 3 篇 image segmentati...
  • 3 篇 distortion
  • 3 篇 image retrieval
  • 3 篇 human visual sys...
  • 3 篇 image denoising
  • 3 篇 sparse represent...
  • 3 篇 benchmark testin...
  • 3 篇 semantics
  • 3 篇 denoising
  • 3 篇 quality assessme...

机构

  • 6 篇 shanghai jiao to...
  • 5 篇 peking univ inst...
  • 5 篇 cooperat mediane...
  • 3 篇 univ sci & techn...
  • 3 篇 shanghai univ sc...
  • 2 篇 univ sci & techn...
  • 2 篇 beijing univ tec...
  • 2 篇 microsoft res as...
  • 2 篇 beijing key lab ...
  • 2 篇 peking univ shen...
  • 2 篇 postech dept com...
  • 2 篇 korea adv inst s...
  • 2 篇 peking univ shen...
  • 2 篇 univ elect sci &...
  • 2 篇 shanghai jiao to...
  • 2 篇 school of electr...
  • 2 篇 xidian univ stat...
  • 2 篇 shanghai univ el...
  • 1 篇 ajou univ dept s...
  • 1 篇 zhejiang univ de...

作者

  • 6 篇 gao wen
  • 5 篇 song li
  • 4 篇 xie rong
  • 4 篇 xiong ruiqin
  • 3 篇 liu dong
  • 3 篇 liu hangfan
  • 3 篇 kim munchurl
  • 3 篇 gu ke
  • 3 篇 wu feng
  • 2 篇 zhu yuesheng
  • 2 篇 zhang wenjun
  • 2 篇 li yunsong
  • 2 篇 shen liquan
  • 2 篇 sumei li
  • 2 篇 wang keyan
  • 2 篇 kim seong tae
  • 2 篇 ro yong man
  • 2 篇 luo zhengyi
  • 2 篇 zhang ya
  • 2 篇 paik joonki

语言

  • 108 篇 英文
  • 4 篇 土耳其文
  • 1 篇 中文
检索条件"任意字段=2017 IEEE Visual Communications and Image Processing, VCIP 2017"
113 条 记 录,以下是61-70 订阅
排序:
Compressive Gradient Based Scalable image SoftCast
Compressive Gradient Based Scalable Image SoftCast
收藏 引用
ieee visual communications and image processing (vcip)
作者: Liu, Hangfan Xiong, Ruiqin Fan, Xiaopeng Luo, Chong Gao, Wen Peking Univ Inst Digital Media Beijing 100871 Peoples R China Harbin Inst Technol Dept Comp Sci Harbin 150001 Heilongjiang Peoples R China Microsoft Res Asia Beijing 100080 Peoples R China
In wireless visual communication systems, it is crucial to effectively utilize channel power and bandwidth in the pursue of optimal performance, and it is worthwhile to adapt the transmission scheme to human vision sy... 详细信息
来源: 评论
Learning Multi-view Embedding in Joint Space for Bidirectional image-Text Retrieval
Learning Multi-view Embedding in Joint Space for Bidirection...
收藏 引用
ieee visual communications and image processing (vcip)
作者: Ran, Lu Wang, Wenmin Peking Univ Shenzhen Grad Sch Sch Elect & Comp Engn Lishui Rd 2199 Shenzhen 518055 Guangdong Peoples R China
In this paper, we propose a framework for learning a joint embedding space for bidirectional image-text retrieval task, which fuses embedding spaces in multi-views. We have implemented two views currently, one is a fr... 详细信息
来源: 评论
Deep Hashing with Triplet Quantization Loss
Deep Hashing with Triplet Quantization Loss
收藏 引用
ieee visual communications and image processing (vcip)
作者: Zhou, Yuefu Huang, Shanshan Zhang, Ya Wang, Yanfeng Shanghai Jiao Tong Univ Cooperat Medianet Innovat Ctr Shanghai Peoples R China
With the explosive growth of image databases, deep hashing, which learns compact binary descriptors for images, has become critical for fast image retrieval. Many existing deep hashing methods leverage quantization lo... 详细信息
来源: 评论
Quantitative Evaluation for Dehazing Algorithms on Synthetic Outdoor Hazy Dataset
Quantitative Evaluation for Dehazing Algorithms on Synthetic...
收藏 引用
ieee visual communications and image processing (vcip)
作者: Li, Yufei Wang, Keyan Xu, Ning Li, Yunsong Xidian Univ State Key Lab Integrated Serv Network Xian 710071 Shaanxi Peoples R China Northwest Elect Power Design Inst Xian 710075 Shaanxi Peoples R China Xian Inst Space Radio Technol Xian 710100 Shaanxi Peoples R China
Dehazing is an important image processing technique that has been paid increasing attention in the recent years. But how to quantitatively evaluate the existing dehazing algorithms is still an open issue. In this pape... 详细信息
来源: 评论
Deep Neural Networks for No-Reference and Full-Reference image Quality Assessment
收藏 引用
ieee TRANSACTIONS ON image processing 2018年 第1期27卷 206-219页
作者: Bosse, Sebastian Maniry, Dominique Mueller, Klaus-Robert Wiegand, Thomas Samek, Wojciech Fraunhofer Heinrich Hertz Inst Dept Video Coding & Analyt D-10587 Berlin Germany Berlin Inst Technol Machine Learning Lab D-10587 Berlin Germany Korea Univ Dept Brain & Cognit Engn Seoul 136713 South Korea Max Planck Inst Informat D-66123 Saarbrucken Germany Fraunhofer Heinrich Hertz Inst D-10587 Berlin Germany Berlin Inst Technol Media Technol Lab D-10587 Berlin Germany
We present a deep neural network-based approach to image quality assessment (IQA). The network is trained end-to-end and comprises ten convolutional layers and five pooling layers for feature extraction, and two fully... 详细信息
来源: 评论
Low Rank Regularization Exploiting Intra and Inter Patch Correlation for image Denoising
Low Rank Regularization Exploiting Intra and Inter Patch Cor...
收藏 引用
ieee visual communications and image processing (vcip)
作者: Liu, Hangfan Xiong, Ruiqin Liu, Dong Wu, Feng Gao, Wen Peking Univ Inst Digital Media Beijing 100871 Peoples R China Univ Sci & Technol China Hefei 230026 Anhui Peoples R China
Based on the observation that a matrix X consisted of non-local highly-correlated patches is of low rank, many image restoration methods use low-rank regularization to exploit correlation between image contents, so th... 详细信息
来源: 评论
Multi-Scale Mutual Feature Convolutional Neural Network for Depth image Denoise and Enhancement
Multi-Scale Mutual Feature Convolutional Neural Network for ...
收藏 引用
ieee visual communications and image processing (vcip)
作者: Liao, Xuan Zhang, Xin South China Univ Technol Sch Elect & Informat Guangzhou 510641 Guangdong Peoples R China
RGB-D images captured by consumer camera can provide pair-wise color and depth information but depth image usually contains strong noise and large holes. Due to different modalities of RGB-D, the intensity-guided dept... 详细信息
来源: 评论
image Super-Resolution Based on Adaptive Joint Distribution Modeling
Image Super-Resolution Based on Adaptive Joint Distribution ...
收藏 引用
ieee visual communications and image processing (vcip)
作者: Liu, Hangfan Xiong, Ruiqin Song, Qiang Wu, Feng Gao, Wen Peking Univ Inst Digital Media Beijing 100871 Peoples R China Univ Sci & Technol China Hefei 230026 Anhui Peoples R China
This paper combines an adaptive reconstruction based approach and a learning based technique into an effective scheme for single image super-resolution. Unlike conventional schemes that adopt pre-trained dictionaries ... 详细信息
来源: 评论
Portable Information Security Display System via Spatial Psychovisual Modulation
Portable Information Security Display System via Spatial Psy...
收藏 引用
ieee visual communications and image processing (vcip)
作者: Li, Xiang Zhai, Guangtao Wang, Jia Gu, Ke Shanghai Jiao Tong Univ Inst Image Commun & Info Proc Shanghai Peoples R China Beijing Univ Technol Fac Informat Technol Beijing Peoples R China Beijing Key Lab Computat Intelligence & Intellige Beijing Peoples R China
With the rapid development of visual media, people prefer to pay more attention to privacy protection in public situations. Currently, most existing researches on information security such as cryptography and steganog... 详细信息
来源: 评论
Deep Fully Convolutional Regression Networks for Single image Haze Removal
Deep Fully Convolutional Regression Networks for Single Imag...
收藏 引用
ieee visual communications and image processing (vcip)
作者: Zhao, Xi Wang, Keyan Li, Yunsong Li, Jiaojiao Xidian Univ State Key Lab Integrated Serv Network Xian 710071 Shaanxi Peoples R China
Haze removal for a single image is known to be a challenging ill-posed problem in computer vision. The performance of existing prior-based image dehazing methods is limited by the effectiveness of hand-designed featur... 详细信息
来源: 评论