咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 13 篇 期刊文献

馆藏范围

  • 113 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 103 篇 工学
    • 81 篇 电气工程
    • 42 篇 计算机科学与技术...
    • 31 篇 信息与通信工程
    • 7 篇 软件工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 光学工程
    • 4 篇 仪器科学与技术
    • 3 篇 机械工程
    • 3 篇 生物工程
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
  • 58 篇 医学
    • 58 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 药学(可授医学、理...
  • 16 篇 理学
    • 11 篇 物理学
    • 6 篇 生物学
    • 5 篇 数学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 文学
    • 3 篇 外国语言文学
  • 2 篇 管理学
    • 2 篇 图书情报与档案管...

主题

  • 8 篇 deep learning
  • 6 篇 image coding
  • 6 篇 visualization
  • 6 篇 image processing
  • 6 篇 image classifica...
  • 5 篇 convolutional ne...
  • 4 篇 super-resolution
  • 4 篇 neural networks
  • 4 篇 optimization
  • 3 篇 image fusion
  • 3 篇 image segmentati...
  • 3 篇 distortion
  • 3 篇 image retrieval
  • 3 篇 human visual sys...
  • 3 篇 image denoising
  • 3 篇 sparse represent...
  • 3 篇 benchmark testin...
  • 3 篇 semantics
  • 3 篇 denoising
  • 3 篇 quality assessme...

机构

  • 6 篇 shanghai jiao to...
  • 5 篇 peking univ inst...
  • 5 篇 cooperat mediane...
  • 3 篇 univ sci & techn...
  • 3 篇 shanghai univ sc...
  • 2 篇 univ sci & techn...
  • 2 篇 beijing univ tec...
  • 2 篇 microsoft res as...
  • 2 篇 beijing key lab ...
  • 2 篇 peking univ shen...
  • 2 篇 postech dept com...
  • 2 篇 korea adv inst s...
  • 2 篇 peking univ shen...
  • 2 篇 univ elect sci &...
  • 2 篇 shanghai jiao to...
  • 2 篇 school of electr...
  • 2 篇 xidian univ stat...
  • 2 篇 shanghai univ el...
  • 1 篇 ajou univ dept s...
  • 1 篇 zhejiang univ de...

作者

  • 6 篇 gao wen
  • 5 篇 song li
  • 4 篇 xie rong
  • 4 篇 xiong ruiqin
  • 3 篇 liu dong
  • 3 篇 liu hangfan
  • 3 篇 kim munchurl
  • 3 篇 gu ke
  • 3 篇 wu feng
  • 2 篇 zhu yuesheng
  • 2 篇 zhang wenjun
  • 2 篇 li yunsong
  • 2 篇 shen liquan
  • 2 篇 sumei li
  • 2 篇 wang keyan
  • 2 篇 kim seong tae
  • 2 篇 ro yong man
  • 2 篇 luo zhengyi
  • 2 篇 zhang ya
  • 2 篇 paik joonki

语言

  • 108 篇 英文
  • 4 篇 土耳其文
  • 1 篇 中文
检索条件"任意字段=2017 IEEE Visual Communications and Image Processing, VCIP 2017"
113 条 记 录,以下是81-90 订阅
排序:
Robust visual Tracking Using Structure-Preserving Sparse Learning
收藏 引用
ieee SIGNAL processing LETTERS 2017年 第5期24卷 707-711页
作者: Kim, Hyuncheol Jeon, Semi Lee, Sangkeun Paik, Joonki Chung Ang Univ Dept Image Seoul 13557 South Korea Chung Ang Univ Grad Sch Adv Imaging Sci Multimedia Comp Lab Seoul 13557 South Korea Chung Ang Univ Dept Image Engn Seoul 156756 South Korea
Even though numerous visual tracking methods have been proposed to deal with image streams, it is a still challenging problem to facilitate a tracking method to accurately distinguish the target from the background wi... 详细信息
来源: 评论
Interest Point Detection Based on Laplacian Energy of Local image Network  2
Interest Point Detection Based on Laplacian Energy of Local ...
收藏 引用
2nd ieee International Conference on Wireless communications, Signal processing and Networking (WiSPNET)
作者: Pournami, P. N. Govindan, V. K. Natl Inst Technol Calicut Dept Comp Sci & Engn Calicut Kerala India IIIT Kottayam Dept Comp Sci & Engn Kottayam Kerala India
A point of interest is the characteristic of an image which can be robustly detected due to its well-defined position. The points of interest should be easily computable and are invariant to transformations in the ima... 详细信息
来源: 评论
A Spectral Graph Based image Coding Method  25
A Spectral Graph Based Image Coding Method
收藏 引用
25th Signal processing and communications Applications Conference (SIU)
作者: Yagan, Ali Cart Ozgen, Melanaet Tonkin Anadolu Univ Elekt Elekt Muhendisligi Bolumu Eskisehir Turkey
In this paper, a spectral graph based image coding method is proposed. In the proposed method, only the smoothing parameter in the graph adjacency matrix, graph Fourier transform (GFT) coefficients kept after hard thr... 详细信息
来源: 评论
A Neural Network Based Low-Light image Denoising Method  3
A Neural Network Based Low-Light Image Denoising Method
收藏 引用
3rd ieee International Conference on Computer and communications (ICCC)
作者: Zhang, Dan Zhao, Lei Xu, Duanqing Lu, Dongming Zhejiang Univ Dept Comp Sci & Technol Hangzhou Zhejiang Peoples R China
Low-light image denoising has been a hotspot for its great importance in solving vision applications, and various solutions have been proposed. In recent years, neural network has shown great potential in single image... 详细信息
来源: 评论
Spatial Domain Multi-Focus image Fusion  25
Spatial Domain Multi-Focus Image Fusion
收藏 引用
25th Signal processing and communications Applications Conference (SIU)
作者: Toprak, Ahmet Nusret Aslantas, Voysel Erciyes Univ Bilgisayar Muhendisligi Bolumu Kayseri Turkey
One of the main problem of the optical imaging systems is limited depth of field which prevent from obtaining an all-in-focus image of the environment. This paper proposes a novel pixel-based multi-focus image fusion ... 详细信息
来源: 评论
Bit Allocation with visual Attention and visual Distortion Sensitivity  25
Bit Allocation with Visual Attention and Visual Distortion S...
收藏 引用
25th Signal processing and communications Applications Conference (SIU)
作者: Pak, Mesut Bayazit, Ulug Istanbul Tech Univ Bilgisayar Muhendisligi Bolumu Istanbul Turkey
In this work, a novel bit allocation method based on visual attention and distortion sensitivity is developed for JPEG2000. Although, visual attention map for an image can be measured by using well-known saliency map ... 详细信息
来源: 评论
CS Regularized SENSE pMRI Reconstruction via Interferometric Modulation  2
CS Regularized SENSE pMRI Reconstruction via Interferometric...
收藏 引用
2nd ieee International Conference on Wireless communications, Signal processing and Networking (WiSPNET)
作者: Islam, Sheikh Rafiul Maity, Santi P. Ray, Ajoy Kumar Neotia Inst Technol Management & Sci South 24 Parganas 743368 W Bengal India Indian Inst Engn Sci & Technol Howrah 711103 W Bengal India
Compressed Sensing (CS) or Compressive Sampling offers an improved data acquisition rate for Parallel Magnetic Resonance Imaging (pMRI) systems to achieve reduced scanning time. In pMRI, the optimization of image qual... 详细信息
来源: 评论
DETECTOR WITH FOCUS: NORMALIZING GRADIENT IN image PYRAMID  24
DETECTOR WITH FOCUS: NORMALIZING GRADIENT IN IMAGE PYRAMID
收藏 引用
24th ieee International Conference on image processing (ICIP)
作者: Kim, Yonghyun Kang, Bong-Nam Kim, Daijin POSTECH Dept Comp Sci & Engn Pohang South Korea
An image pyramid can extend many object detection algorithms to solve detection on multiple scales. However, interpolation during the resampling process of an image pyramid causes gradient variation, which is the diff... 详细信息
来源: 评论
Bag-of-Spatial Words(BoSW)Framework for Predicting SAR image Registration in Real Time Applications  7
Bag-of-Spatial Words(BoSW)Framework for Predicting SAR Image...
收藏 引用
7th International Conference on Advances in Computing and communications (ICACC)
作者: Sirisha, B. Sandhya, B. Paidimarry, Chandra Sekhar Sastry, A. S. Chandrasekhara KL Univ Dept Elect & Commun Engn Guntur AP India MVSR Engn Coll Dept Comp Sci & Engn Hyderabad Andhra Pradesh India Osmania Univ UCE Dept Elect & Commun Engn Hyderabad Andhra Pradesh India
SAR image registration is a precursor for several remote sensing applications, which need precise spatial transformation between the real time moving image and fixed off-line image. In such applications, the processin... 详细信息
来源: 评论
Least Square Denoising in Spectral Domain for Hyperspectral images  7
Least Square Denoising in Spectral Domain for Hyperspectral ...
收藏 引用
7th International Conference on Advances in Computing and communications (ICACC)
作者: Jayaprakash, Chippy Jacob, Naveen Varghese Renu, R. K. Sowmya, V Soman, K. P. Amrita Univ Amrita Vishwa Vidyapeetham Amrita Sch Engn Ctr Computat Engn & Networking CEN Coimbatore Tamil Nadu India
Denoising is one of the fundamental pre-processing tasks in image processing that improves the quality of the information in the image. processing of hyperspectral images requires high computational power and time. In... 详细信息
来源: 评论