咨询与建议

限定检索结果

文献类型

  • 51 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 58 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 工学
    • 46 篇 计算机科学与技术...
    • 18 篇 电气工程
    • 15 篇 软件工程
    • 7 篇 信息与通信工程
    • 5 篇 生物工程
    • 4 篇 控制科学与工程
    • 1 篇 光学工程
  • 8 篇 理学
    • 6 篇 生物学
    • 3 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 系统科学
  • 7 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 27 篇 machine learning
  • 12 篇 deep learning
  • 5 篇 machine learning...
  • 5 篇 training
  • 4 篇 computational mo...
  • 4 篇 hpc
  • 3 篇 iot
  • 3 篇 high performance...
  • 2 篇 hpx
  • 2 篇 reinforcement le...
  • 2 篇 mpi
  • 2 篇 amt
  • 2 篇 task analysis
  • 2 篇 behavior analysi...
  • 2 篇 optimization
  • 2 篇 data-parallel tr...
  • 2 篇 loop-level paral...
  • 2 篇 stochastic gradi...
  • 2 篇 security
  • 2 篇 cloud computing

机构

  • 2 篇 argonne natl lab...
  • 1 篇 imec exasci life...
  • 1 篇 pacific northwes...
  • 1 篇 la trobe univ co...
  • 1 篇 department of co...
  • 1 篇 ibm syst grp pou...
  • 1 篇 hpcmp pettt/engi...
  • 1 篇 univ parthenope ...
  • 1 篇 univ informat te...
  • 1 篇 univ michigan de...
  • 1 篇 coll william & m...
  • 1 篇 georgia inst tec...
  • 1 篇 univ melbourne s...
  • 1 篇 univ chicago joi...
  • 1 篇 univ cadiz cadiz
  • 1 篇 korea adv inst s...
  • 1 篇 florida inst tec...
  • 1 篇 tsinghua univ de...
  • 1 篇 mlcommons ca usa
  • 1 篇 la trobe univ sc...

作者

  • 2 篇 vishwanath venka...
  • 2 篇 emani murali
  • 2 篇 rhu minsoo
  • 2 篇 foster ian
  • 1 篇 subramoni hari
  • 1 篇 pahl marc-oliver
  • 1 篇 brettin thomas
  • 1 篇 balaprakash pras...
  • 1 篇 silberman joel
  • 1 篇 basu kanad
  • 1 篇 zhou ching
  • 1 篇 yang yuan
  • 1 篇 fukushi tatsuya
  • 1 篇 roy probir
  • 1 篇 kaiser hartmut
  • 1 篇 imes connor
  • 1 篇 quadir farhan
  • 1 篇 cocco paolo
  • 1 篇 chuang pierce
  • 1 篇 kanter david

语言

  • 58 篇 英文
检索条件"任意字段=2018 IEEE/ACM Machine Learning in HPC Environments, MLHPC 2018"
58 条 记 录,以下是21-30 订阅
排序:
Optimizing machine learning on Apache Spark in hpc environments
Optimizing Machine Learning on Apache Spark in HPC Environme...
收藏 引用
2018 ieee/acm machine learning in hpc environments, mlhpc 2018
作者: Li, Zhenyu Davis, James Jarvis, Stephen A. University of Warwick Department of Computer Science Coventry United Kingdom
machine learning has established itself as a powerful tool for the construction of decision making models and algorithms through the use of statistical techniques on training data. However, a significant impediment to... 详细信息
来源: 评论
Deep learning Evolutionary Optimization for Regression of Rotorcraft Vibrational Spectra
Deep Learning Evolutionary Optimization for Regression of Ro...
收藏 引用
2018 ieee/acm machine learning in hpc environments, mlhpc 2018
作者: Martinez, Daniel Brewer, Wesley Behm, Gregory Strelzoff, Andrew Wilson, Andrew Wade, Daniel United States HPCMP PETTT/Engility Corporation United States United States
A method for Deep Neural Network (DNN) hyperparameter search using evolutionary optimization is proposed for nonlinear high-dimensional multivariate regression problems. Deep networks often lead to extensive hyperpara... 详细信息
来源: 评论
Proceedings of mlhpc 2018: machine learning in hpc environments, Held in conjunction with SC 2018: The International Conference for High Performance Computing, Networking, Storage and Analysis
Proceedings of MLHPC 2018: Machine Learning in HPC Environme...
收藏 引用
2018 ieee/acm machine learning in hpc environments, mlhpc 2018
The proceedings contain 13 papers. The topics discussed include: large-scale clustering using MPI-based canopy;automated labeling of electron microscopy images using deep learning;large minibatch training on supercomp...
来源: 评论
Understanding Scalability and Fine-Grain Parallelism of Synchronous Data Parallel Training
Understanding Scalability and Fine-Grain Parallelism of Sync...
收藏 引用
ieee/acm Workshop on machine learning in High Performance Computing environments (mlhpc)
作者: Jiali Li Bogdan Nicolae Justin Wozniak George Bosilca The University of Tennessee Knoxville USA Argonne National Laboratory USA
In the age of big data, deep learning has emerged as a powerful tool to extract insight and exploit its value, both in industry and scientific applications. With increasing complexity of learning models and amounts of... 详细信息
来源: 评论
Automated Labeling of Electron Microscopy Images Using Deep learning
Automated Labeling of Electron Microscopy Images Using Deep ...
收藏 引用
2018 ieee/acm machine learning in hpc environments, mlhpc 2018
作者: Weber, Gunther H. Ophus, Colin Ramakrishnan, Lavanya Lawrence Berkeley National Laboratory Computational Research Division One Cyclotron Road BerkeleyCA94720 United States Department of Computer Science University of California Davis One Shields Avenue DavisCA95616 United States National Center for Electron Microscopy Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road BerkeleyCA94720 United States
Searching for scientific data requires metadata providing a relevant context. Today, generating metadata is a time and labor intensive manual process that is often neglected, and important datasets are not accessible ... 详细信息
来源: 评论
Scheduling Optimization of Parallel Linear Algebra Algorithms Using Supervised learning
Scheduling Optimization of Parallel Linear Algebra Algorithm...
收藏 引用
ieee/acm Workshop on machine learning in High Performance Computing environments (mlhpc)
作者: gabriel laberge Shahrzad Shirzad Patrick Diehl Hartmut Kaiser Serge Prudhomme Adrian S. Lemoine Department of Mathematics and Industrial Engineering Polytechnique Montréal Montréal QC Canada Center for Computation and Technology Louisiana State University Baton-Rouge LA USA
Linear algebra algorithms are used widely in a variety of domains, e.g machine learning, numerical physics and video games graphics. For all these applications, loop-level parallelism is required to achieve high perfo... 详细信息
来源: 评论
A systematic literature review of machine learning in online personal health data
收藏 引用
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION 2019年 第6期26卷 561-576页
作者: Yin, Zhijun Sulieman, Lina M. Malin, Bradley A. Vanderbilt Univ Med Ctr Dept Biomed Informat 2525 West End AveSuite 1412A Nashville TN 37203 USA Vanderbilt Univ Med Ctr Dept Biostat Nashville TN USA Vanderbilt Univ Dept Elect Engn & Comp Sci 221 Kirkland Hall Nashville TN 37235 USA
Objective: User-generated content (UGC) in online environments provides opportunities to learn an individual's health status outside of clinical settings. However, the nature of UGC brings challenges in both data ... 详细信息
来源: 评论
Evaluating the Wide Area Classroom After 10,500 hpc Students
Evaluating the Wide Area Classroom After 10,500 HPC Students
收藏 引用
ieee/acm Workshop on Education for High-Performance Computing (Eduhpc)
作者: Urbanic, John Maiden, Thomas Pittsburgh Supercomp Ctr Pittsburgh PA 15213 USA
As of mid-2018 we have taught over 10,500 students in the course of 58 events using the Wide Area Classroom, a novel distributed teaching platform. This has been a successful effort gauged by several important metrics... 详细信息
来源: 评论
Beyond the Memory Wall: A Case for Memory-centric hpc System for Deep learning  51
Beyond the Memory Wall: A Case for Memory-centric HPC System...
收藏 引用
51st Annual ieee/acm International Symposium on Microarchitecture (MICRO)
作者: Kwon, Youngeun Rhu, Minsoo Korea Adv Inst Sci & Technol Sch Elect Engn Seoul South Korea
As the models and the datasets to train deep learning (DL) models scale, system architects are faced with new challenges, one of which is the memory capacity bottleneck, where the limited physical memory inside the ac... 详细信息
来源: 评论
Enhancing machine learning optimization algorithms by leveraging memory caching  16
Enhancing machine learning optimization algorithms by levera...
收藏 引用
International Conference on High Performance Computing & Simulation (hpcS)
作者: Chakroun, Imen Vander Aa, Tom Ashby, Tom IMEC Exasci Life Lab Leuven Belgium
Searching a solution space using Stochastic Gradient Descent (SGD) depends on the examples picked at each iteration of the algorithm. Therefore, best practices suggest randomizing the order of training points to visit... 详细信息
来源: 评论