咨询与建议

限定检索结果

文献类型

  • 51 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 58 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 工学
    • 46 篇 计算机科学与技术...
    • 18 篇 电气工程
    • 15 篇 软件工程
    • 7 篇 信息与通信工程
    • 5 篇 生物工程
    • 4 篇 控制科学与工程
    • 1 篇 光学工程
  • 8 篇 理学
    • 6 篇 生物学
    • 3 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 系统科学
  • 7 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 27 篇 machine learning
  • 12 篇 deep learning
  • 5 篇 machine learning...
  • 5 篇 training
  • 4 篇 computational mo...
  • 4 篇 hpc
  • 3 篇 iot
  • 3 篇 high performance...
  • 2 篇 hpx
  • 2 篇 reinforcement le...
  • 2 篇 mpi
  • 2 篇 amt
  • 2 篇 task analysis
  • 2 篇 behavior analysi...
  • 2 篇 optimization
  • 2 篇 data-parallel tr...
  • 2 篇 loop-level paral...
  • 2 篇 stochastic gradi...
  • 2 篇 security
  • 2 篇 cloud computing

机构

  • 2 篇 argonne natl lab...
  • 1 篇 imec exasci life...
  • 1 篇 pacific northwes...
  • 1 篇 la trobe univ co...
  • 1 篇 department of co...
  • 1 篇 ibm syst grp pou...
  • 1 篇 hpcmp pettt/engi...
  • 1 篇 univ parthenope ...
  • 1 篇 univ informat te...
  • 1 篇 univ michigan de...
  • 1 篇 coll william & m...
  • 1 篇 georgia inst tec...
  • 1 篇 univ melbourne s...
  • 1 篇 univ chicago joi...
  • 1 篇 univ cadiz cadiz
  • 1 篇 korea adv inst s...
  • 1 篇 florida inst tec...
  • 1 篇 tsinghua univ de...
  • 1 篇 mlcommons ca usa
  • 1 篇 la trobe univ sc...

作者

  • 2 篇 vishwanath venka...
  • 2 篇 emani murali
  • 2 篇 rhu minsoo
  • 2 篇 foster ian
  • 1 篇 subramoni hari
  • 1 篇 pahl marc-oliver
  • 1 篇 brettin thomas
  • 1 篇 balaprakash pras...
  • 1 篇 silberman joel
  • 1 篇 basu kanad
  • 1 篇 zhou ching
  • 1 篇 yang yuan
  • 1 篇 fukushi tatsuya
  • 1 篇 roy probir
  • 1 篇 kaiser hartmut
  • 1 篇 imes connor
  • 1 篇 quadir farhan
  • 1 篇 cocco paolo
  • 1 篇 chuang pierce
  • 1 篇 kanter david

语言

  • 58 篇 英文
检索条件"任意字段=2018 IEEE/ACM Machine Learning in HPC Environments, MLHPC 2018"
58 条 记 录,以下是51-60 订阅
排序:
Exploring Auditory-Inspired Acoustic Features for Room Acoustic Parameter Estimation From Monaural Speech
收藏 引用
ieee-acm TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2018年 第10期26卷 1809-1820页
作者: Xiong, Feifei Goetze, Stefan Kollmeier, Birger Meyer, Bernd T. Carl von Ossietzky Univ Oldenburg Med Phys Dept D-26129 Oldenburg Germany Carl von Ossietzky Univ Oldenburg Cluster Excellence Hearing4all D-26129 Oldenburg Germany Fraunhofer Inst Digital Media Technol IDMT D-26129 Oldenburg Germany Cluster Excellence Hearing4all D-26129 Oldenburg Germany
Room acoustic parameters that characterize acoustic environments can help to improve signal enhancement algorithms such as for dereverberation, or automatic speech recognition by adapting models to the current paramet... 详细信息
来源: 评论
All Eyes on You: Distributed Multi-Dimensional IoT Microservice Anomaly Detection  14
All Eyes on You: Distributed Multi-Dimensional IoT Microserv...
收藏 引用
14th International Conference on Network and Service Management (CNSM)
作者: Pahl, Marc-Oliver Aubet, Francois-Xavier Tech Univ Munich Munich Germany
The Internet of Things (IoT) is a Distributed System of cooperating Microservices (mu Ss). IoT services manage devices that monitor and control their environments. The interaction of the IoT with the physical environm... 详细信息
来源: 评论
Data Placement Optimization in GPU Memory Hierarchy using Predictive Modeling
Data Placement Optimization in GPU Memory Hierarchy using Pr...
收藏 引用
Workshop on Memory Centric High Performance Computing (MChpc)
作者: Stoltzfus, Larisa Emani, Murali Lin, Pei-Hung Liao, Chunhua Univ Edinburgh Edinburgh Midlothian Scotland Lawrence Livermore Natl Lab Livermore CA 94550 USA
Modern supercomputers often use Graphic Processing Units (or GPUs) to meet the ever-growing demands for high performance computing. GPUs typically have a complex memory architecture with various types of memories and ... 详细信息
来源: 评论
Prediction and Modeling for No-Reference Video Quality Assessment based on machine learning  14
Prediction and Modeling for No-Reference Video Quality Asses...
收藏 引用
14th International Conference on Signal Image Technology & Internet Based Systems (SITIS)
作者: Pedro Lopez, Juan Martin, David Jimenez, David Manuel Menendez, Jose Univ Politecn Madrid Signals Syst & Radiocommun Dept Madrid Spain
The increase in popularity of video streaming, the improvement of bandwidth corresponding to 5G networks and the transmission of higher amounts of data derived from advanced video formats such as Ultra High Definition... 详细信息
来源: 评论
Across the Stack Opportunities for Deep learning Acceleration  18
Across the Stack Opportunities for Deep Learning Acceleratio...
收藏 引用
23rd ieee/acm International Symposium on Low Power Electronics and Design (ISLPED)
作者: Srinivasan, Vijayalakshmi Fleischer, Bruce Shukla, Sunil Ziegler, Matthew Silberman, Joel Oh, Jinwook Choi, Jungwook Mueller, Silvia Agrawal, Ankur Babinsky, Tina Cao, Nianzheng Chen, Chia-Yu Chuang, Pierce Fox, Thomas Gristede, George Guillorn, Michael Haynie, Howard Klaiber, Michael Lee, Dongsoo Lo, Shih-Hsien Maier, Gary Scheuermann, Michael Venkataramani, Swagath Vezyrtzis, Christos Wang, Naigang Yee, Fanchieh Zhou, Ching Lu, Pong-Fei Curran, Brian Chang, Leland Gopalakrishnan, Kailash IBM TJ Watson Res Ctr Yorktown Hts NY 10598 USA IBM Syst Grp Poughkeepsie NY USA
The combination of growth in compute capabilities and availability of large datasets has led to a re-birth of deep learning. Deep Neural Networks (DNNs) have become state-of-the-art in a variety of machine learning ta... 详细信息
来源: 评论
NUMA-Caffe: NUMA-Aware Deep learning Neural Networks
收藏 引用
acm TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION 2018年 第2期15卷 24-24页
作者: Roy, Probir Song, Shuaiwen Leon Krishnamoorthy, Sriram Vishnu, Abhinav Sengupta, Dipanjan Liu, Xu Coll William & Mary Dept Comp Sci McGlothlin St Hall 117 Williamsburg VA 23185 USA Pacific Northwest Natl Lab High Performance Comp Grp Richland WA 99352 USA Coll William & Mary Williamsburg VA 23187 USA Intel Labs Parallel Comp Lab 2200 Mission Coll Blvd Santa Clara CA 95054 USA
Convolution Neural Networks (CNNs), a special subcategory of Deep learning Neural Networks (DNNs), have become increasingly popular in industry and academia for their powerful capability in pattern classification, ima... 详细信息
来源: 评论
Evolving deep networks using hpc
Evolving deep networks using HPC
收藏 引用
2017 machine learning in hpc environments, mlhpc 2017
作者: Young, Steven R. Rose, Derek C. Johnston, Travis Heller, William T. Karnowski, Thomas P. Potok, Thomas E. Patton, Robert M. Perdue, Gabriel Miller, Jonathan Oak Ridge National Laboratory Oak Ridge United States Fermi National Accelerator Laboratory BataviaIL United States Universidad Técnica Federico Santa María Avenida España Valparaíso Chile
While a large number of deep learning networks have been studied and published that produce outstanding results on natural image datasets, these datasets only make up a fraction of those to which deep learning can be ... 详细信息
来源: 评论
Proceedings of mlhpc 2015: machine learning in High-Performance Computing environments - Held in conjunction with SC 2015: The International Conference for High Performance Computing, Networking, Storage and Analysis
Proceedings of MLHPC 2015: Machine Learning in High-Performa...
收藏 引用
Workshop on machine learning in High-Performance Computing environments, mlhpc 2015
The proceedings contain 5 papers. The topics discussed include: asynchronous parallel stochastic gradient descent - a numeric core for scalable distributed machine learning algorithms;HPDBSCAN - highly parallel DBSCAN...
来源: 评论