咨询与建议

限定检索结果

文献类型

  • 23 篇 会议

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 13 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 5 篇 生物工程
    • 3 篇 土木工程
    • 2 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
  • 13 篇 理学
    • 10 篇 数学
    • 8 篇 统计学(可授理学、...
    • 5 篇 生物学
    • 1 篇 化学
  • 1 篇 教育学
    • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 9 篇 generative adver...
  • 2 篇 deep neural netw...
  • 1 篇 tools
  • 1 篇 free energy
  • 1 篇 reinforcement le...
  • 1 篇 libraries
  • 1 篇 statistical anal...
  • 1 篇 gallium nitride
  • 1 篇 discriminators
  • 1 篇 time series
  • 1 篇 graphical user i...
  • 1 篇 proteins
  • 1 篇 maximum likeliho...
  • 1 篇 dynamics
  • 1 篇 heuristic method...
  • 1 篇 training

机构

  • 4 篇 google brain uni...
  • 2 篇 deepmind united ...
  • 1 篇 max-planck insti...
  • 1 篇 virginia tech. u...
  • 1 篇 department of bi...
  • 1 篇 mila université ...
  • 1 篇 university of ca...
  • 1 篇 department of st...
  • 1 篇 simulamet
  • 1 篇 csail mit united...
  • 1 篇 columbia univers...
  • 1 篇 toyota technolog...
  • 1 篇 university of ca...
  • 1 篇 wuhan university
  • 1 篇 eth zurich depar...
  • 1 篇 machine learning...
  • 1 篇 stanford univers...
  • 1 篇 department of ap...
  • 1 篇 vehicle technolo...
  • 1 篇 university of to...

作者

  • 2 篇 tucker george
  • 2 篇 anonymous
  • 2 篇 dinh laurent
  • 1 篇 schölkopf bernha...
  • 1 篇 fan shuangfei
  • 1 篇 ingraham john
  • 1 篇 zhang zijun
  • 1 篇 prabhu vinay uda...
  • 1 篇 bernstein michae...
  • 1 篇 narcomey austin
  • 1 篇 poole ben
  • 1 篇 haile mulugeta a...
  • 1 篇 darrell trevor
  • 1 篇 krishna ranjay
  • 1 篇 garg vikas k.
  • 1 篇 cunningham john ...
  • 1 篇 larochelle hugo
  • 1 篇 m. zaheer
  • 1 篇 vinyals oriol
  • 1 篇 durr nicholas j.

语言

  • 23 篇 英文
检索条件"任意字段=2019 Deep Generative Models for Highly Structured Data, DGS@ICLR 2019 Workshop"
23 条 记 录,以下是1-10 订阅
排序:
deep generative models for highly structured data, dgs@iclr 2019 workshop
Deep Generative Models for Highly Structured Data, DGS@ICLR ...
收藏 引用
2019 deep generative models for highly structured data, dgs@iclr 2019 workshop
The proceedings contain 42 papers. The topics discussed include: generating molecules via chemical reactions;a seed-augment-train framework for universal digit classification;learning deep latent-variable MRFS with am...
来源: 评论
Debiasing deep generative models via likelihood-free importance weighting
Debiasing deep generative models via likelihood-free importa...
收藏 引用
2019 deep generative models for highly structured data, dgs@iclr 2019 workshop
作者: Anonymous
A learned generative model often gives biased statistics relative to the underlying data distribution. A standard technique to correct this bias is by importance weighting samples from the model by the likelihood rati... 详细信息
来源: 评论
deep generative models for generating labeled graphs
Deep generative models for generating labeled graphs
收藏 引用
2019 deep generative models for highly structured data, dgs@iclr 2019 workshop
作者: Fan, Shuangfei Huang, Bert Virginia Tech. United States
As a new way to train generative models, generative adversarial networks (GANs) have achieved considerable success in image generation, and this framework has also recently been applied to data with graph structures. ... 详细信息
来源: 评论
Unsupervised demixing of structured signals from their superposition using GANs
Unsupervised demixing of structured signals from their super...
收藏 引用
2019 deep generative models for highly structured data, dgs@iclr 2019 workshop
作者: Anonymous
Recently, generative Adversarial Networks (GANs) have emerged as a popular alternative for modeling complex high dimensional distributions. Most of the existing works implicitly assume that the clean samples from the ... 详细信息
来源: 评论
Perceptual generative autoencoders
Perceptual generative autoencoders
收藏 引用
2019 deep generative models for highly structured data, dgs@iclr 2019 workshop
作者: Zhang, Zijun Zhang, Ruixiang Li, Zongpeng Bengio, Yoshua Paull, Liam University of Calgary Canada MILA Université de Montréal Canada Wuhan University China
Modern generative models are usually designed to match target distributions directly in the data space, where the intrinsic dimensionality of data can be much lower than the ambient dimensionality. We argue that this ... 详细信息
来源: 评论
generative models for graph-based protein design
Generative models for graph-based protein design
收藏 引用
2019 deep generative models for highly structured data, dgs@iclr 2019 workshop
作者: Ingraham, John Garg, Vikas K. Barzilay, Regina Jaakkola, Tommi CSAIL MIT United States
Engineered proteins offer the potential to solve many problems in biomedicine, energy, and materials science, but creating designs that succeed is difficult in practice. A significant aspect of this challenge is the c... 详细信息
来源: 评论
Compositional gan (Extended abstract): Learning image-conditional binary composition
Compositional gan (Extended abstract): Learning image-condit...
收藏 引用
2019 deep generative models for highly structured data, dgs@iclr 2019 workshop
作者: Azadi, Samaneh Pathak, deepak Ebrahimi, Sayna Darrell, Trevor University of California Berkeley United States
generative Adversarial Networks (GANs) can produce images of surprising complexity and realism but are generally structured to sample from a single latent source ignoring the explicit spatial interaction between multi... 详细信息
来源: 评论
A rad approach to deep mixture models
A rad approach to deep mixture models
收藏 引用
2019 deep generative models for highly structured data, dgs@iclr 2019 workshop
作者: Dinh, Laurent Sohl-Dickstein, Jascha Pascanu, Razvan Larochelle, Hugo Google Brain United States DeepMind United Kingdom
Flow based models such as REAL NVP are an extremely powerful approach to density estimation. However, existing flow based models are restricted to transforming continuous densities over a continuous input space into s...
来源: 评论
structured prediction using cGANs with fusion discriminator
Structured prediction using cGANs with fusion discriminator
收藏 引用
2019 deep generative models for highly structured data, dgs@iclr 2019 workshop
作者: Mahmood, Faisal Xu, Wenhao Durr, Nicholas J. Johnson, Jeremiah W. Yuille, Alan Department of Biomedical Engineering Johns Hopkins University BaltimoreMD21218 United States Department of Applied Engineering and Sciences University of New Hampshire ManchesterNH03101 United States Department of Computer Science Johns Hopkins University BaltimoreMD21218 United States
We propose the fusion discriminator, a single unified framework for incorporating conditional information into a generative adversarial network (GAN) for a variety of distinct structured prediction tasks, including im... 详细信息
来源: 评论
Disentangled state space models: Unsupervised learning of dynamics across heterogeneous environments
Disentangled state space models: Unsupervised learning of dy...
收藏 引用
2019 deep generative models for highly structured data, dgs@iclr 2019 workshop
作者: Miladinović, Dorde Buhmann, Joachim M. Gondal, Waleed Schölkopf, Bernhard Bauer, Stefan ETH Zurich Department for Computer Science Switzerland Max-Planck Institute for Intelligent Systems Germany
Sequential data often originates from diverse environments. Across them exist both shared regularities and environment specifics. To learn robust cross-environment descriptions of sequences we introduce disentangled s... 详细信息
来源: 评论