咨询与建议

限定检索结果

文献类型

  • 3 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 1 篇 信息与通信工程
  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 统计学(可授理学、...
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 1 篇 learning algorit...
  • 1 篇 machine learning

机构

  • 1 篇 evidation health...
  • 1 篇 massachusetts in...
  • 1 篇 university of to...
  • 1 篇 new york univers...

作者

  • 1 篇 kochetkov denis
  • 1 篇 delisle laure
  • 1 篇 schucher nathan
  • 1 篇 boquet thomas
  • 1 篇 ranganath rajesh
  • 1 篇 mcdermott matthe...
  • 1 篇 cornebise julien
  • 1 篇 foschini luca
  • 1 篇 wang shirly
  • 1 篇 marinsek nikki
  • 1 篇 oreshkin boris n...
  • 1 篇 ghassemi marzyeh

语言

  • 3 篇 英文
检索条件"任意字段=2019 Reproducibility in Machine Learning, RML@ICLR 2019 Workshop"
3 条 记 录,以下是1-10 订阅
排序:
rml@iclr 2019 workshop - reproducibility in machine learning
RML@ICLR 2019 Workshop - Reproducibility in Machine Learning
收藏 引用
2019 reproducibility in machine learning, rml@iclr 2019 workshop
The proceedings contain 8 papers. The topics discussed include: reproducibility and stability analysis in metric-based few-shot learning;reproducing meta-learning with differentiable closed-form solvers;challenging co...
来源: 评论
reproducibility and stability analysis in metric-based few-shot learning
Reproducibility and stability analysis in metric-based few-s...
收藏 引用
2019 reproducibility in machine learning, rml@iclr 2019 workshop
作者: Boquet, Thomas Delisle, Laure Kochetkov, Denis Schucher, Nathan Oreshkin, Boris N. Cornebise, Julien
We propose a study of the stability of several few-shot learning algorithms subject to variations in the hyper-parameters and optimization schemes while controlling the random seed. We propose a methodology for testin... 详细信息
来源: 评论
reproducibility in machine learning for health
Reproducibility in machine learning for health
收藏 引用
2019 reproducibility in machine learning, rml@iclr 2019 workshop
作者: McDermott, Matthew B.A. Wang, Shirly Marinsek, Nikki Ranganath, Rajesh Ghassemi, Marzyeh Foschini, Luca Massachusetts Institute of Technology United States University of Toronto Canada Evidation Health Inc. United States New York University United States
machine learning algorithms designed to characterize, monitor, and intervene on human health (ML4H) are expected to perform safely and reliably when operating at scale, potentially outside strict human supervision. Th... 详细信息
来源: 评论