咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,274 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是91-100 订阅
排序:
MoreFusion: Multi-object Reasoning for 6D Pose Estimation from Volumetric Fusion
MoreFusion: Multi-object Reasoning for 6D Pose Estimation fr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wada, Kentaro Sucar, Edgar James, Stephen Lenton, Daniel Davison, Andrew J. Imperial Coll London Dyson Robot Lab London England
Robots and other smart devices need efficient object-based scene representations from their on-board vision systems to reason about contact, physics and occlusion. Recognized precise object models will play an importa... 详细信息
来源: 评论
Intelligent Scene Caching to Improve Accuracy for Energy-Constrained Embedded vision
Intelligent Scene Caching to Improve Accuracy for Energy-Con...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Simpson, Benjamin Lubana, Ekdeep Liu, Yuchen Dick, Robert Univ Michigan Ann Arbor MI 48109 USA
We describe an efficient method of improving the performance of vision algorithms operating on video streams by reducing the amount of data captured and transferred from image sensors to analysis servers in a data-awa... 详细信息
来源: 评论
Crossing cuts polygonal puzzles: Models and Solvers
Crossing cuts polygonal puzzles: Models and Solvers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Harel, Peleg Ben-Shahar, Ohad
Jigsaw puzzle solving, the problem of constructing a coherent whole from a set of non-overlapping unordered fragments, is fundamental to numerous applications, and yet most of the literature has focused thus far on le... 详细信息
来源: 评论
A Low-cost & Real-time Motion Capture System
A Low-cost & Real-time Motion Capture System
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chatzitofis, Anargyros Albanis, Georgios Zioulis, Nikolaos Thermos, Spyridon Codewheel Larnaka Larnaca Cyprus Univ Thessaly Dept Informat & Telecommun Volos Greece
Traditional marker-based motion capture requires excessive and specialized equipment, hindering accessibility and wider adoption. In this work, we demonstrate such a system but rely on a very sparse set of low-cost co... 详细信息
来源: 评论
ABAW: Valence-Arousal Estimation, Expression recognition, Action Unit Detection & Multi-Task Learning Challenges
ABAW: Valence-Arousal Estimation, Expression Recognition, Ac...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kollias, Dimitrios Queen Mary Univ London London England
This paper describes the third Affective Behavior Analysis in-the-wild (ABAW) Competition, held in conjunction with ieee International conference on computer vision and pattern recognition (cvpr), 2022. The 3rd ABAW C... 详细信息
来源: 评论
Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images
Deep Adversarial Decomposition: A Unified Framework for Sepa...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zou, Zhengxia Lei, Sen Shi, Tianyang Shi, Zhenwei Ye, Jieping Univ Michigan Ann Arbor MI 48109 USA Beihang Univ Beijing Peoples R China NetEase Fuxi AI Lab Hangzhou Peoples R China Didi Chuxing Beijing Peoples R China
Separating individual image layers from a single mixed image has long been an important but challenging task. We propose a unified framework named "deep adversarial decomposition" for single superimposed ima... 详细信息
来源: 评论
Gold Seeker: Information Gain from Policy Distributions for Goal-oriented vision-and-Langauge Reasoning
Gold Seeker: Information Gain from Policy Distributions for ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Abbasnejad, Ehsan Abbasnejad, Iman Wu, Qi Shi, Javen van den Hengel, Anton Australian Inst Machine Learning Adelaide SA Australia Univ Adelaide Adelaide SA Australia Fugro Australia Marine Perth WA Australia
As computer vision moves from passive analysis of pixels to active analysis of semantics, the breadth of information algorithms need to reason over has expanded significantly. One of the key challenges in this vein is... 详细信息
来源: 评论
Generative-discriminative Feature Representations for Open-set recognition
Generative-discriminative Feature Representations for Open-s...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Perera, Pramuditha Morariu, Vlad, I Jain, Rajiv Manjunatha, Varun Wigington, Curtis Ordonez, Vicente Patel, Vishal M. Johns Hopkins Univ Baltimore MD 21218 USA Adobe Res San Francisco CA USA Univ Virginia Charlottesville VA USA
We address the problem of open-set recognition, where the goal is to determine if a given sample belongs to one of the classes used for training a model (known classes). The main challenge in open-set recognition is t... 详细信息
来源: 评论
Mixture Dense Regression for Object Detection and Human Pose Estimation
Mixture Dense Regression for Object Detection and Human Pose...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Varamesh, Ali Tuytelaars, Tinne Katholieke Univ Leuven ESAT PSI Leuven Belgium
Mixture models are well-established learning approaches that, in computer vision, have mostly been applied to inverse or ill-defined problems. However, they are general-purpose divide-and-conquer techniques, splitting... 详细信息
来源: 评论
TAL EmotioNet Challenge 2020 Rethinking the Model Chosen Problem in Multi-Task Learning
TAL EmotioNet Challenge 2020 Rethinking the Model Chosen Pro...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Pengcheng Wang, Zihao Ji, Zhilong Liu, Xiao Yang, Songfan Wu, Zhongqin TAL Educ Grp Beijing Peoples R China
This paper introduces our approach to the EmotioNet Challenge 2020. We pose the AU recognition problem as a multi-task learning problem, where the non-rigid facial muscle motion (mainly the first 17 AUs) and the rigid... 详细信息
来源: 评论