咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,274 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是121-130 订阅
排序:
SpikingResformer: Bridging ResNet and vision Transformer in Spiking Neural Networks
SpikingResformer: Bridging ResNet and Vision Transformer in ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Shi, Xinyu Hao, Zecheng Yu, Zhaofei Peking Univ Inst Artificial Intelligence Beijing Peoples R China Peking Univ Sch Comp Sci Beijing Peoples R China
The remarkable success of vision Transformers in Artificial Neural Networks (ANNs) has led to a growing interest in incorporating the self-attention mechanism and transformer-based architecture into Spiking Neural Net... 详细信息
来源: 评论
Intrinsic Image Diffusion for Indoor Single-view Material Estimation
Intrinsic Image Diffusion for Indoor Single-view Material Es...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kocsis, Peter Sitzmann, Vincent Niessner, Matthias Tech Univ Munich Munich Germany MIT EECS Cambridge MA 02139 USA
We present Intrinsic Image Diffusion, a generative model for appearance decomposition of indoor scenes. Given a single input view, we sample multiple possible material explanations represented as albedo, roughness, an... 详细信息
来源: 评论
Dual Pose-invariant Embeddings: Learning Category and Object-specific Discriminative Representations for recognition and Retrieval
Dual Pose-invariant Embeddings: Learning Category and Object...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sarkar, Rohan Kak, Avinash Purdue Univ Elect & Comp Engn W Lafayette IN 47907 USA
In the context of pose-invariant object recognition and retrieval, we demonstrate that it is possible to achieve significant improvements in performance if both the category-based and the object-identity-based embeddi... 详细信息
来源: 评论
Bi-Causal: Group Activity recognition via Bidirectional Causality
Bi-Causal: Group Activity Recognition via Bidirectional Caus...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Youliang Liu, Wenxuan Xu, Danni Zhou, Zhuo Wang, Zheng Wuhan Univ Natl Engn Res Ctr Multimedia Software Sch Comp Sci Inst Artificial Intelligence Wuhan Hubei Peoples R China Hubei Key Lab Multimedia & Network Commun Engn Wuhan Hubei Peoples R China Wuhan Univ Technol Wuhan Hubei Peoples R China Natl Univ Singapore Singapore Singapore
Current approaches in Group Activity recognition (GAR) predominantly emphasize Human Relations (HRs) while often neglecting the impact of Human-Object Interactions (HOIs). This study prioritizes the consideration of b... 详细信息
来源: 评论
PIN: Positional Insert Unlocks Object Localisation Abilities in VLMs
PIN: Positional Insert Unlocks Object Localisation Abilities...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dorkenwald, Michael Barazani, Nimrod Snoek, Cees G. M. Asano, Yuki M. Univ Amsterdam Amsterdam Netherlands
vision-Language Models (VLMs), such as Flamingo and GPT-4V, have shown immense potential by integrating large language models with vision systems. Nevertheless, these models face challenges in the fundamental computer... 详细信息
来源: 评论
Resource-Efficient Transformer Pruning for Finetuning of Large Models
Resource-Efficient Transformer Pruning for Finetuning of Lar...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ilhan, Fatih Su, Gong Tekin, Selim Furkan Huang, Tiansheng Hu, Sihao Liu, Ling Georgia Inst Technol Atlanta GA 30332 USA IBM Res Yorktown Hts NY USA
With the recent advances in vision transformers and large language models (LLMs), finetuning costly large models on downstream learning tasks poses significant challenges under limited computational resources. This pa... 详细信息
来源: 评论
Learning by Correction: Efficient Tuning Task for Zero-Shot Generative vision-Language Reasoning
Learning by Correction: Efficient Tuning Task for Zero-Shot ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Rongjie Wu, Yu He, Xuming ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China
Generative vision-language models (VLMs) have shown impressive performance in zero-shot vision-language tasks like image captioning and visual question answering. However, improving their zero-shot reasoning typically... 详细信息
来源: 评论
On the Robustness of Language Guidance for Low-Level vision Tasks: Findings from Depth Estimation
On the Robustness of Language Guidance for Low-Level Vision ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chatterjee, Agneet Gokhale, Tejas Baral, Chitta Yang, Yezhou Arizona State Univ Tempe AZ 85281 USA Univ Maryland Baltimore Cty Baltimore MD 21228 USA
Recent advances in monocular depth estimation have been made by incorporating natural language as additional guidance. Although yielding impressive results, the impact of the language prior, particularly in terms of g... 详细信息
来源: 评论
Optimal Transport Aggregation for Visual Place recognition
Optimal Transport Aggregation for Visual Place Recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Izquierdo, Sergio Civera, Javier Univ Zaragoza I3A Zaragoza Spain
The task of Visual Place recognition (VPR) aims to match a query image against references from an extensive database of images from different places, relying solely on visual cues. State-of-the-art pipelines focus on ... 详细信息
来源: 评论
Physical Property Understanding from Language-Embedded Feature Fields
Physical Property Understanding from Language-Embedded Featu...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhai, Albert J. Shen, Yuan Chen, Emily Y. Wang, Gloria X. Wang, Xinlei Wang, Sheng Guan, Kaiyu Wang, Shenlong Univ Illinois Champaign IL 61820 USA
Can computers perceive the physical properties of objects solely through vision? Research in cognitive science and vision science has shown that humans excel at identifying materials and estimating their physical prop... 详细信息
来源: 评论