咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,273 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是221-230 订阅
排序:
Sieve: Multimodal Dataset Pruning Using Image Captioning Models
Sieve: Multimodal Dataset Pruning Using Image Captioning Mod...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mahmouc, Anas Elhoushi, Mostafa Abbass, Amro Yang, Yu Ardalani, Newsha Leather, Hugh Morcos, Art S. Meta FAIR Menlo Pk CA 94025 USA Univ Toronto Toronto ON Canada UC Los Angeles Los Angeles CA USA DatologyAI Redwood City CA USA
vision-Language Models (VLMs) are pretrained on large, diverse, and noisy web-crawled datasets. This underscores the critical need for dataset pruning, as the quality of these datasets is strongly correlated with the ... 详细信息
来源: 评论
Finding Lottery Tickets in vision Models via Data-driven Spectral Foresight Pruning
Finding Lottery Tickets in Vision Models via Data-driven Spe...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Iurada, Leonardo Ciccone, Marco Tommasi, Tatiana Politecn Torino Turin Italy
Recent advances in neural network pruning have shown how it is possible to reduce the computational costs and memory demands of deep learning models before training. We focus on this framework and propose a new prunin... 详细信息
来源: 评论
Hyper-MD: Mesh Denoising with Customized Parameters Aware of Noise Intensity and Geometric Characteristics
Hyper-MD: Mesh Denoising with Customized Parameters Aware of...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Xingtao Wei, Hongliang Fan, Xiaopeng Zhao, Debin Harbin Inst Technol Harbin Peoples R China
Mesh denoising (MD) is a critical task in geometry processing, as meshes from scanning or AIGC techniques are susceptible to noise contamination. The challenge of MD lies in the diverse nature of mesh facets in terms ... 详细信息
来源: 评论
Towards Understanding and Improving Adversarial Robustness of vision Transformers
Towards Understanding and Improving Adversarial Robustness o...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Jain, Samyak Dutta, Tanima Indian Inst Technol BHU Varanasi Varanasi Uttar Pradesh India
Recent literature has demonstrated that vision transformers (VITs) exhibit superior performance compared to convolutional neural networks (CNNs). The majority of recent research on adversarial robustness, however, has... 详细信息
来源: 评论
Unified Language-driven Zero-shot Domain Adaptation
Unified Language-driven Zero-shot Domain Adaptation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Senqiao Tian, Zhuotao Jiang, Li Jia, Jiaya Chinese Univ Hong Kong Hong Kong Peoples R China Harbin Inst Technol Shenzhen Peoples R China Chinese Univ Hong Kong Shenzhen Peoples R China
This paper introduces Unified Language-driven Zero-shot Domain Adaptation ( ULDA), a novel task setting that enables a single model to adapt to diverse target domains without explicit domain-ID knowledge. We identify ... 详细信息
来源: 评论
THRONE: An Object-based Hallucination Benchmark for the Free-form Generations of Large vision-Language Models
THRONE: An Object-based Hallucination Benchmark for the Free...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kaul, Prannay Li, Zhizhong Yang, Hao Dukler, Yonatan Swaminathan, Ashwin Taylor, C. J. Soatto, Stefano Univ Oxford VGG Oxford England AWS AI Labs Oxford England
Mitigating hallucinations in large vision-language models (LVLMs) remains an open problem. Recent benchmarks do not address hallucinations in open-ended free-form responses, which we term "Type I hallucinations&q... 详细信息
来源: 评论
On the Estimation of Image-matching Uncertainty in Visual Place recognition
On the Estimation of Image-matching Uncertainty in Visual Pl...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zaffar, Mubariz Nan, Liangliang Kooij, Julian F. P. Delft Univ Technol ME Delft Netherlands Delft Univ Technol ABE Delft Netherlands
In Visual Place recognition (VPR) the pose of a query image is estimated by comparing the image to a map of reference images with known reference poses. As is typical for image retrieval problems, a feature extractor ... 详细信息
来源: 评论
Gradient Reweighting: Towards Imbalanced Class-Incremental Learning
Gradient Reweighting: Towards Imbalanced Class-Incremental L...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: He, Jiangpeng Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA
Class-Incremental Learning (CIL) trains a model to continually recognize new classes from non-stationary data while retaining learned knowledge. A major challenge of CIL arises when applying to real-world data charact... 详细信息
来源: 评论
YOLO-World: Real-Time Open-Vocabulary Object Detection
YOLO-World: Real-Time Open-Vocabulary Object Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cheng, Tianheng Sone, Lin Ge, Yixiao Liu, Wenyu Wang, Xinggang Shan, Yong Tencent AI Lab Shenzhen Guangdong Peoples R China Tencent PCG ARC Lab Shenzhen Guangdong Peoples R China Huazhong Univ Sci & Technol Sch EIC Wuhan Hubei Peoples R China
The You Only Look Once (YOLO) series of detectors have established themselves as efficient and practical tools. However, their reliance on predefined and trained object categories limits their applicability in open sc... 详细信息
来源: 评论
On the test-time zero-shot generalization of vision-language models: Do we really need prompt learning?
On the test-time zero-shot generalization of vision-language...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zanella, Maxime Ben Ayed, Ismail UCLouvain Louvain Belgium UMons Mons Belgium ETS Montreal Montreal PQ Canada
The development of large vision-language models, notably CLIP, has catalyzed research into effective adaptation techniques, with a particular focus on soft prompt tuning. Conjointly, test-time augmentation, which util... 详细信息
来源: 评论