咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,273 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是251-260 订阅
排序:
Boosting Continual Learning of vision-Language Models via Mixture-of-Experts Adapters
Boosting Continual Learning of Vision-Language Models via Mi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yu, Jiazuo Zhuge, Yunzhi Zhang, Lu Hu, Ping Wang, Dong Lu, Huchuan He, You Dalian Univ Technol Dalian Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China Tsinghua Univ Beijing Peoples R China
Continual learning can empower vision-language models to continuously acquire new knowledge, without the need for access to the entire historical dataset. However, mitigating the performance degradation in large-scale... 详细信息
来源: 评论
Unravelling Robustness of Deep Face recognition Networks Against Illicit Drug Abuse Images
Unravelling Robustness of Deep Face Recognition Networks Aga...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dhake, Hruturaj Agarwal, Akshay IISER Bhopal Data Sci & Engn Bhopal India
Alteration in facial features can lead to a significant drop in recognition performance. These alterations can be due to several factors: one such prominent and less explored factor is illicit drug abuse. To advance t...
来源: 评论
Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning
Troika: Multi-Path Cross-Modal Traction for Compositional Ze...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hu, Siteng Gong, Biao Feng, Yutong Zhang, Min Lv, Yiliang Wang, Donglin Zhejiang Univ Hangzhou Peoples R China Alibaba Grp Hangzhou Peoples R China Westlake Univ Sch Engn AI Div Machine Intelligence Lab MiLAB Hangzhou Peoples R China
Recent compositional zero-shot learning (CZSL) methods adapt pre-trained vision-language models (VLMs) by constructing trainable prompts only for composed state-object pairs. Relying on learning the joint representati... 详细信息
来源: 评论
ViP-LLaVA: Making Large Multimodal Models Understand Arbitrary Visual Prompts
ViP-LLaVA: Making Large Multimodal Models Understand Arbitra...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cai, Mu Liu, Haotian Mustikovela, Siva Karthik Meyer, Gregory P. Chai, Yuning Park, Dennis Lee, Yong Jae Univ Wisconsin Madison WI 53706 USA Cruise LLC San Francisco CA USA
While existing large vision-language multimodal models focus on whole image understanding, there is a prominent gap in achieving region-specific comprehension. Current approaches that use textual coordinates or spatia... 详细信息
来源: 评论
Generating Enhanced Negatives for Training Language-Based Object Detectors
Generating Enhanced Negatives for Training Language-Based Ob...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Shiyu Zhao, Long Kumar, Vijay B. G. Suh, Yumin Metaxas, Dimitris N. Chandraker, Manmohan Schulter, Samuel Rutgers State Univ New Brunswick NJ 08901 USA NEC Labs Amer Princeton NJ USA Google Res Mountain View CA USA Univ Calif San Diego La Jolla CA USA
The recent progress in language-based open-vocabulary object detection can be largely attributed to finding better ways of leveraging large-scale data with free-form text annotations. Training such models with a discr... 详细信息
来源: 评论
TAMM: TriAdapter Multi-Modal Learning for 3D Shape Understanding
TAMM: TriAdapter Multi-Modal Learning for 3D Shape Understan...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Zhihao Cao, Shengcao Wang, Yu-Xiong Xi An Jiao Tong Univ Xian Peoples R China Univ Illinois Champaign IL USA
The limited scale of current 3D shape datasets hinders the advancements in 3D shape understanding, and motivates multi-modal learning approaches which transfer learned knowledge from data-abundant 2D image and languag... 详细信息
来源: 评论
Efficient Online Multi-Camera Tracking with Memory-Efficient Accumulated Appearance Features and Trajectory Validation
Efficient Online Multi-Camera Tracking with Memory-Efficient...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lap Quoc Tran Huan Duc Vi Asilla Tokyo Japan
Multi-camera tracking (MCT) plays a crucial role in various computer vision applications. However, accurate tracking of individuals across multiple cameras faces challenges, particularly with identity switches. In thi... 详细信息
来源: 评论
Boosting Adversarial Transferability by Block Shuffle and Rotation
Boosting Adversarial Transferability by Block Shuffle and Ro...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Kunyu He, Xuanran Wang, Wenxuan Wang, Xiaosen Chinese Univ Hong Kong Hong Kong Peoples R China Nanyang Technol Univ Singapore Singapore Huawei Singular Secur Lab Beijing Peoples R China
Adversarial examples mislead deep neural networks with imperceptible perturbations and have brought significant threats to deep learning. An important aspect is their transferability, which refers to their ability to ... 详细信息
来源: 评论
Collaborating Foundation Models for Domain Generalized Semantic Segmentation
Collaborating Foundation Models for Domain Generalized Seman...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Benigmim, Yasser Roy, Subhankar Essid, Slim Kalogeiton, Vicky Lathuiliere, Stephane Inst Polytech Paris Telecom Paris LTCI Palaiseau France Inst Polytech Paris CNRS Ecole Polytech LIX Palaiseau France Univ Aberdeen Aberdeen Scotland
Domain Generalized Semantic Segmentation (DGSS) deals with training a model on a labeled source domain with the aim of generalizing to unseen domains during inference. Existing DGSS methods typically effectuate robust... 详细信息
来源: 评论
Multiscale vision Transformers meet Bipartite Matching for efficient single-stage Action Localization
Multiscale Vision Transformers meet Bipartite Matching for e...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ntinou, Ioanna Sanchez, Enrique Tzimiropoulos, Georgios Queen Mary Univ London London England Samsung AI Ctr Cambridge Cambridge England
Action Localization is a challenging problem that combines detection and recognition tasks, which are often addressed separately. State-of-the-art methods rely on off-the-shelf bounding box detections pre-computed at ... 详细信息
来源: 评论