咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,273 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是261-270 订阅
排序:
Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features
Back to 3D: Few-Shot 3D Keypoint Detection with Back-Project...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wimmer, Thomas Wonka, Peter Ovsjanikov, Maks Ecole Polytech LIX Palaiseau France Tech Univ Munich Munich Germany KAUST Thuwal Saudi Arabia
With the immense growth of dataset sizes and computing resources in recent years, so-called foundation models have become popular in NLP and vision tasks. In this work, we propose to explore foundation models for the ... 详细信息
来源: 评论
LowRankOcc: Tensor Decomposition and Low-Rank Recovery for vision-based 3D Semantic Occupancy Prediction
LowRankOcc: Tensor Decomposition and Low-Rank Recovery for V...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Linqing Xu, Xiuwei Wang, Ziwei Zhang, Yunpeng Zhang, Borui Zheng, Wenzhao Du, Dalong Zhou, Jie Lu, Jiwen Tsinghua Univ Dept Automat Beijing Peoples R China Tianjin Univ Sch Elect & Informat Engn Tianjin Peoples R China PhiGent Robot Beijing Peoples R China
In this paper, we present a tensor decomposition and low-rank recovery approach (LowRankOcc) for vision-based 3D semantic occupancy prediction. Conventional methods model outdoor scenes with fine-grained 3D grids, but... 详细信息
来源: 评论
ESR-NeRF: Emissive Source Reconstruction Using LDR Multi-view Images
ESR-NeRF: Emissive Source Reconstruction Using LDR Multi-vie...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Jeong, Jinseo Koo, Junseo Zhang, Qimeng Kim, Gunhee Seoul Natl Univ Seoul South Korea Korea Univ Seoul South Korea
Existing NeRF-based inverse rendering methods suppose that scenes are exclusively illuminated by distant light sources, neglecting the potential influence of emissive sources within a scene. In this work, we confront ... 详细信息
来源: 评论
Language-only Efficient Training of Zero-shot Composed Image Retrieval
Language-only Efficient Training of Zero-shot Composed Image...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gu, Geonmo Chun, Sanghyuk Kim, Wonjae Kang, Yoohoon Yun, Sangdoo NAVER Vis Seongnam South Korea NAVER AI Lab Bundangdong South Korea
Composed image retrieval (CIR) task takes a composed query of image and text, aiming to search relative images for both conditions. Conventional CIR approaches need a training dataset composed of triplets of query ima... 详细信息
来源: 评论
Fooling Polarization-based vision using Locally Controllable Polarizing Projection
Fooling Polarization-based Vision using Locally Controllable...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Zhuoxiao Zhong, Zhihang Nobuhara, Shohei Nishino, Ko Zheng, Yinqiang Univ Tokyo Tokyo Japan Shanghai Artificial Intelligence Lab Shanghai Peoples R China Kyoto Univ Kyoto Japan
Polarization is a fundamental property of light that encodes abundant information regarding surface shape, material, illumination and viewing geometry. The computer vision community has witnessed a blossom of polariza...
来源: 评论
Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation
Boosting Object Detection with Zero-Shot Day-Night Domain Ad...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Du, Zhipeng Shi, Miaojing Deng, Jiankang Kings Coll London Dept Informat London England Tongji Univ Coll Elect & Informat Engn Shanghai Peoples R China Imperial Coll London Dept Comp London England Huawei London Res London England
Detecting objects in low-light scenarios presents a persistent challenge, as detectors trained on well-lit data exhibit significant performance degradation on low-light data due to low visibility. Previous methods mit... 详细信息
来源: 评论
MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning
MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-T...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Agiza, Ahmed Neseem, Marina Reda, Sherief Brown Univ Providence RI 02912 USA
Adapting models pre-trained on large-scale datasets to a variety of downstream tasks is a common strategy in deep learning. Consequently, parameter-efficient fine-tuning methods have emerged as a promising way to adap... 详细信息
来源: 评论
Revisiting Counterfactual Problems in Referring Expression Comprehension
Revisiting Counterfactual Problems in Referring Expression C...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yu, Zhihan Li, Ruifan Beijing Univ Posts & Telecommun Sch Artificial Intelligence Beijing Peoples R China
Traditional referring expression comprehension (REC) aims to locate the target referent in an image guided by a text query. Several previous methods have studied on the Counterfactual problem in REC (C-REC) where the ... 详细信息
来源: 评论
DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions
DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Shi, Yunxiao Singh, Manish Kumar Cai, Hong Porikli, Fatih Qualcomm AI Res San Diego CA 92121 USA
In this paper, we introduce a novel approach that harnesses both 2D and 3D attentions to enable highly accurate depth completion without requiring iterative spatial propagations. Specifically, we first enhance a basel... 详细信息
来源: 评论
GenZI: Zero-Shot 3D Human-Scene Interaction Generation
GenZI: Zero-Shot 3D Human-Scene Interaction Generation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Lei Dai, Angela Tech Univ Munich Munich Germany
Can we synthesize 3D humans interacting with scenes without learning from any 3D human-scene interaction data? We propose GenZI(1), the first zero-shot approach to generating 3D human-scene interactions. Key to GenZI ... 详细信息
来源: 评论