咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,274 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是21-30 订阅
排序:
Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing
Probabilistic Sampling of Balanced K-Means using Adiabatic Q...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zaech, Jan-Nico Danelljan, Martin Birdal, Tolga Van Gool, Luc Swiss Fed Inst Technol Zurich Switzerland Univ Sofia INSAIT Sofia Bulgaria Imperial Coll London London England
Adiabatic quantum computing (AQC) is a promising approach for discrete and often NP-hard optimization problems. Current AQCs allow to implement problems of research interest, which has sparked the development of quant... 详细信息
来源: 评论
An Empirical Study of Scaling Law for Scene Text recognition
An Empirical Study of Scaling Law for Scene Text Recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Rang, Miao Bi, Zhenni Liu, Chuanjian Wang, Yunhe Han, Kai Huawei Noahs Ark Lab Montreal PQ Canada
The laws of model size, data volume, computation and model performance have been extensively studied in the field of Natural Language Processing (NLP). However, the scaling laws in Scene Text recognition (STR) have no... 详细信息
来源: 评论
Masked AutoDecoder is Effective Multi-Task vision Generalist
Masked AutoDecoder is Effective Multi-Task Vision Generalist
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Qiu, Han Huang, Jiaxing Gao, Peng Lu, Lewei Zhang, Xiaoqin Lu, Shijian Nanyang Technol Univ S Lab Singapore Singapore Shanghai Artificial Intelligence Lab Shanghai Peoples R China Sensetime Res Beijing Peoples R China Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou Peoples R China
Inspired by the success of general-purpose models in NLP, recent studies attempt to unify different vision tasks in the same sequence format and employ autoregressive Transformers for sequence prediction. They apply u... 详细信息
来源: 评论
One-Shot Open Affordance Learning with Foundation Models
One-Shot Open Affordance Learning with Foundation Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Gen Sun, Deqing Sevilla-Lara, Laura Jampani, Varun Univ Edinburgh Edinburgh Midlothian Scotland Google Res Mountain View CA USA Stabil AI London England
We introduce One-shot Open Affordance Learning (OOAL), where a model is trained with just one example per base object category, but is expected to identify novel objects and affordances. While vision-language models e... 详细信息
来源: 评论
Frozen Feature Augmentation for Few-Shot Image Classification
Frozen Feature Augmentation for Few-Shot Image Classificatio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Bar, Andreas Houlsby, Neil Dehghani, Mostafa Kumar, Manoj Google DeepMind London England Tech Univ Carolo Wilhelmina Braunschweig Braunschweig Germany
Training a linear classifier or lightweight model on top of pretrained vision model outputs, so-called 'frozen features', leads to impressive performance on a number of downstream few-shot tasks. Currently, fr... 详细信息
来源: 评论
JoAPR: Cleaning the Lens of Prompt Learning for vision-Language Models
JoAPR: Cleaning the Lens of Prompt Learning for Vision-Langu...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Guo, Yuncheng Guo, Xiaodong Fudan Univ Dept Elect Engn Shanghai 200438 Peoples R China
Leveraging few-shot datasets in prompt learning for vision-Language Models eliminates the need for manual prompt engineering while highlighting the necessity of accurate annotations for the labels. However, high-level... 详细信息
来源: 评论
Selective, Interpretable and Motion Consistent Privacy Attribute Obfuscation for Action recognition
Selective, Interpretable and Motion Consistent Privacy Attri...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ilic, Filip Zhao, He Pock, Thomas Wildes, Richard P. Graz Univ Technol Graz Austria York Univ York N Yorkshire England
Concerns for the privacy of individuals captured in public imagery have led to privacy-preserving action recognition. Existing approaches often suffer from issues arising through obfuscation being applied globally and... 详细信息
来源: 评论
TransLoc4D: Transformer-based 4D Radar Place recognition
TransLoc4D: Transformer-based 4D Radar Place Recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Peng, Guohao Li, Heshan Zhao, Yangyang Zhang, Jun Wu, Zhenyu Zheng, Pengyu Wang, Danwei Nanyang Technol Univ Singapore Singapore
Place recognition is crucial for unmanned vehicles in terms of localization and mapping. Recent years have witnessed numerous explorations in the field, where 2D cameras and 3D LiDARs are mostly employed. Despite thei... 详细信息
来源: 评论
Label Propagation for Zero-shot Classification with vision-Language Models
Label Propagation for Zero-shot Classification with Vision-L...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Stojnic, Vladan Kalantidis, Yannis Tolias, Giorgos Czech Tech Univ FEE VRG Prague Czech Republic NAVER LABS Europe Meylan France
vision-Language Models (VLMs) have demonstrated impressive performance on zero-shot classification, i.e. classification when provided merely with a list of class names. In this paper, we tackle the case of zero-shot c... 详细信息
来源: 评论
Florence-2: Advancing a Unified Representation for a Variety of vision Tasks
Florence-2: Advancing a Unified Representation for a Variety...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xiao, Bin Wu, Haiping Xu, Weijian Dai, Xiyang Hu, Houdong Lu, Yumao Zeng, Michael Liu, Ce Yuan, Lu Microsoft Corp Redmond WA 98052 USA
We introduce Florence-2, a novel vision foundation model with a unified, prompt-based representation for various computer vision and vision-language tasks. While ex-isting large vision models excel in transfer learnin... 详细信息
来源: 评论