咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,273 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是331-340 订阅
排序:
Contextual Augmented Global Contrast for Multimodal Intent recognition
Contextual Augmented Global Contrast for Multimodal Intent R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sun, Kaili Xie, Zhiwen Ye, Mang Zhang, Huyin Wuhan Univ Sch Comp Sci Wuhan Peoples R China Cent China Normal Univ Sch Comp Sci Wuhan Peoples R China
Multimodal intent recognition (MIR) aims to perceive the human intent polarity via language, visual, and acoustic modalities. The inherent intent ambiguity makes it challenging to recognize in multimodal scenarios. Ex... 详细信息
来源: 评论
StableVITON: Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On
StableVITON: Learning Semantic Correspondence with Latent Di...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kim, Jeongho Gu, Gyojung Park, Minho Park, Sunghyun Choo, Jaegul Korea Adv Inst Sci & Technol Daejeon South Korea
Given a clothing image and a person image, an image-based virtual try-on aims to generate a customized image that appears natural and accurately reflects the characteristics of the clothing image. In this work, we aim... 详细信息
来源: 评论
Collecting Cross-Modal Presence-Absence Evidence for Weakly-Supervised Audio-Visual Event Perception
Collecting Cross-Modal Presence-Absence Evidence for Weakly-...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gao, Junyu Chen, Mengyuan Xu, Changsheng Chinese Acad Sci CASIA Inst Automat State Key Lab Multimodal Artificial Intelligence Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China
With only video-level event labels, this paper targets at the task of weakly-supervised audio-visual event perception (WS-AVEP), which aims to temporally localize and categorize events belonging to each modality. Desp... 详细信息
来源: 评论
AffordanceLLM: Grounding Affordance from vision Language Models
AffordanceLLM: Grounding Affordance from Vision Language Mod...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Qian, Shengyi Chen, Weifeng Bai, Mm Zhou, Xiong Tu, Zhuowen Li, Li Erran Amazon AWS AI Seattle WA 98109 USA
Affordance grounding refers to the task of finding the area of an object with which one can interact. It is a fundamental but challenging task, as a successful solution requires the comprehensive understanding of a sc... 详细信息
来源: 评论
Progressive Semantic-Guided vision Transformer for Zero-Shot Learning
Progressive Semantic-Guided Vision Transformer for Zero-Shot...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Shiming Hou, Wenjin Khan, Salman Khan, Fahad Shahbaz Mohamed Bin Zayed Univ AI Abu Dhabi U Arab Emirates Huazhong Univ Sci & Technol Wuhan Peoples R China Australian Natl Univ Canberra ACT Australia Linkoping Univ Linkoping Sweden
Zero-shot learning (ZSL) recognizes the unseen classes by conducting visual-semantic interactions to transfer semantic knowledge from seen classes to unseen ones, supported by semantic information (e.g., attributes). ... 详细信息
来源: 评论
Constrained Evolutionary Diffusion Filter for Monocular Endoscope Tracking
Constrained Evolutionary Diffusion Filter for Monocular Endo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Luo, Xiongbiao Xiamen Univ Dept Comp Sci & Technol Xiamen Peoples R China Xiamen Univ Natl Inst Data Sci Hlth & Med Xiamen 361102 Peoples R China
Stochastic filtering is widely used to deal with nonlinear optimization problems such as 3-D and visual tracking in various computer vision and augmented reality applications. Many current methods suffer from an imbal... 详细信息
来源: 评论
RegionPLC: Regional Point-Language Contrastive Learning for Open-World 3D Scene Understanding
RegionPLC: Regional Point-Language Contrastive Learning for ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Jihan Ding, Runyu Deng, Weipeng Wang, Zhe Qi, Xiaojuan Univ Hong Kong Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China
We propose a lightweight and scalable Regional Point-Language Contrastive learning framework, namely RegionPLC, for open-world 3D scene understanding, aiming to identify and recognize open-set objects and categories. ... 详细信息
来源: 评论
A General Framework for Jersey Number recognition in Sports Video
A General Framework for Jersey Number Recognition in Sports ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Koshkina, Maria Elder, James H. York Univ Toronto ON Canada
Jersey number recognition is an important task in sports video analysis, partly due to its importance for long-term player tracking. It can be viewed as a variant of scene text recognition. However, there is a lack of... 详细信息
来源: 评论
PEM: Prototype-based Efficient MaskFormer for Image Segmentation
PEM: Prototype-based Efficient MaskFormer for Image Segmenta...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cavagnero, Niccolo Rosi, Gabriele Cuttano, Claudia Pistilli, Francesca Ciccone, Marco Averta, Giuseppe Cermelli, Fabio Politecn Torino Turin Italy Focoos AI Rome Italy
Recent transformer-based architectures have shown impressive results in the field of image segmentation. Thanks to their flexibility, they obtain outstanding performance in multiple segmentation tasks, such as semanti... 详细信息
来源: 评论
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding
MovieChat: From Dense Token to Sparse Memory for Long Video ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Song, Enxin Chai, Wenhao Wang, Guanhong Zhang, Yucheng Zhou, Haoyang Wu, Feiyang Chi, Haozhe Guo, Xun Ye, Tian Zhang, Yanting Lu, Yan Hwang, Jenq-Neng Wang, Gaoang Zhejiang Univ Hangzhou Peoples R China Univ Washington Seattle WA 98195 USA Microsoft Res Asia Florence Italy Hong Kong Univ Sci & Technol GZ Hong Kong Peoples R China Donghua Univ Shanghai Peoples R China Shanghai Artificial Intelligence Lab Shanghai Peoples R China
Recently, integrating video foundation models and large language models to build a video understanding system can overcome the limitations of specific pre-defined vision tasks. Yet, existing systems can only handle vi... 详细信息
来源: 评论