咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,273 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是361-370 订阅
排序:
SignGraph: A Sign Sequence is Worth Graphs of Nodes
SignGraph: A Sign Sequence is Worth Graphs of Nodes
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gan, Shiwei Yin, Yafeng Jiang, Zhiwei Wen, Hongkai Xie, Lei Lu, Sanglu Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China Univ Warwick Dept Comp Sci Warwick England
Despite the recent success of sign language research, the widely adopted CNN-based backbones are mainly migrated from other computer vision tasks, in which the contours and texture of objects are crucial for identifyi... 详细信息
来源: 评论
SaCo Loss: Sample-wise Affinity Consistency for vision-Language Pre-training
SaCo Loss: Sample-wise Affinity Consistency for Vision-Langu...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wu, Sitong Tan, Haoru Tian, Zhuotao Chen, Yukang Qi, Xiaojuan Jia, Jiaya CUHK Hong Kong Peoples R China HKU Hong Kong Peoples R China SmartMore Hong Kong Peoples R China
vision-language pre-training (VLP) aims to learn joint representations of vision and language modalities. The contrastive paradigm is currently dominant in this field. However, we observe a notable misalignment phenom... 详细信息
来源: 评论
EgoGen: An Egocentric Synthetic Data Generator
EgoGen: An Egocentric Synthetic Data Generator
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Gen Zhao, Kaifeng Zhang, Siwei Lyu, Xiaozhong Dusmanu, Mihai Zhang, Yan Pollefeys, Marc Tang, Siyu Swiss Fed Inst Technol Zurich Switzerland Microsoft Redmond WA USA
Understanding the world in first-person view is fundamental in Augmented Reality (AR). This immersive perspective brings dramatic visual changes and unique challenges compared to third-person views. Synthetic data has... 详细信息
来源: 评论
PIGEON: Predicting Image Geolocations
PIGEON: Predicting Image Geolocations
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Haas, Lukas Skreta, Michal Alberti, Silas Finn, Chelsea Stanford Univ Stanford CA 94305 USA
Planet-scale image geolocalization remains a challenging problem due to the diversity of images originating from anywhere in the world. Although approaches based on vision transformers have made significant progress i... 详细信息
来源: 评论
Sharingan: A Transformer Architecture for Multi-Person Gaze Following
Sharingan: A Transformer Architecture for Multi-Person Gaze ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tafasca, Samy Gupta, Anshul Odobez, Jean-Marc Idiap Res Inst Martigny Switzerland Ecole Polytech Fed Lausanne Lausanne Switzerland
Gaze is a powerful form of non-verbal communication that humans develop from an early age. As such, modeling this behavior is an important task that can benefit a broad set of application domains ranging from robotics... 详细信息
来源: 评论
Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification
Leveraging Cross-Modal Neighbor Representation for Improved ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yi, Chao Ren, Lu Zhan, De-Chuan Ye, Han-Jia Nanjing Univ Natl Key Lab Novel Software Technol Nanjing Peoples R China Nanjing Univ Sch Artificial Intelligence Nanjing Peoples R China
CLIP showcases exceptional cross-modal matching capabilities due to its training on image-text contrastive learning tasks. However, without specific optimization for unimodal scenarios, its performance in single-modal... 详细信息
来源: 评论
PromptSync: Bridging Domain Gaps in vision-Language Models through Class-Aware Prototype Alignment and Discrimination
PromptSync: Bridging Domain Gaps in Vision-Language Models t...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Khandelwal, Anant Glance AI Bangalore Karnataka India
The potential for zero-shot generalization in vision-language (V-L) models such as CLIP has spurred their widespread adoption in addressing numerous downstream tasks. Previous methods have employed test-time prompt tu... 详细信息
来源: 评论
Lift3D: Zero-Shot Lifting of Any 2D vision Model to 3D
Lift3D: Zero-Shot Lifting of Any 2D Vision Model to 3D
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Varma, Mukund T. Wang, Peihao Fan, Zhiwen Wang, Zhangyang Su, Hao Ramamoorthi, Ravi Univ Calif San Diego La Jolla CA 92093 USA Univ Texas Austin Austin TX USA
In recent years, there has been an explosion of 2D vision models for numerous tasks such as semantic segmentation, style transfer or scene editing, enabled by large-scale 2D image datasets. At the same time, there has... 详细信息
来源: 评论
Visual Program Distillation: Distilling Tools and Programmatic Reasoning into vision-Language Models
Visual Program Distillation: Distilling Tools and Programmat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hu, Yushi Stretcu, Otilia Lu, Chun-Ta Viswanathan, Krishnamurthy Hata, Kenji Luo, Enming Krishna, Ranjay Fuxman, Ariel Google Res Mountain View CA 94043 USA Univ Washington Seattle WA 98195 USA
Solving complex visual tasks such as "Who invented the musical instrument on the right?" involves a composition of skills: understanding space, recognizing instruments, and also retrieving prior knowledge. R... 详细信息
来源: 评论
From Coarse to Fine-Grained Open-Set recognition
From Coarse to Fine-Grained Open-Set Recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lang, Nico Snaebjarnarson, Vesteinn Cole, Elijah Mac Aodha, Oisin Igel, Christian Belongie, Serge Univ Copenhagen Copenhagen Denmark Altos Labs San Diego CA USA Univ Edinburgh Edinburgh Midlothian Scotland
Open-set recognition (OSR) methods aim to identify whether or not a test example belongs to a category observed during training. Depending on how visually similar a test example is to the training categories, the OSR ... 详细信息
来源: 评论