咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,273 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是371-380 订阅
排序:
Transformer-based Unified recognition of Two Hands Manipulating Objects
Transformer-based Unified Recognition of Two Hands Manipulat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cho, Hoseong Kim, Chanwoo Kim, Jihyeon Lee, Seongyeong Ismayilzada, Elkhan Baek, Seungryul UNIST Ulsan South Korea
Understanding the hand-object interactions from an egocentric video has received a great attention recently. So far, most approaches are based on the convolutional neural network (CNN) features combined with the tempo... 详细信息
来源: 评论
Generalized Single-Image-Based Morphing Attack Detection Using Deep Representations from vision Transformer
Generalized Single-Image-Based Morphing Attack Detection Usi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Haoyu Ramachandra, Raghavendra Raja, Kiran Busch, Christoph Norwegian Univ Sci & Technol Trondheim Norway Darmstadt Univ Appl Sci Darmstadt Germany
Face morphing attacks have posed severe threats to Face recognition Systems (FRS), which are operated in border control and passport issuance use cases. Correspondingly, morphing attack detection algorithms (MAD) are ... 详细信息
来源: 评论
Initialization Noise in Image Gradients and Saliency Maps
Initialization Noise in Image Gradients and Saliency Maps
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Woerl, Ann-Christin Disselhoff, Jan Wand, Michael Johannes Gutenberg Univ Mainz Inst Comp Sci Mainz Germany
In this paper, we examine gradients of logits of image classification CNNs by input pixel values. We observe that these fluctuate considerably with training randomness, such as the random initialization of the network... 详细信息
来源: 评论
Collaborative Visual Place recognition through Federated Learning
Collaborative Visual Place Recognition through Federated Lea...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dutto, Mattia Berton, Gabriele Caldarola, Debora Fani, Eros Trivigno, Gabriele Masone, Carlo Politecn Torino Turin Italy
Visual Place recognition (VPR) aims to estimate the location of an image by treating it as a retrieval problem. VPR uses a database of geo-tagged images and leverages deep neural networks to extract a global represent... 详细信息
来源: 评论
Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts
Toward Generalist Anomaly Detection via In-context Residual ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Jiawen Pang, Guansong Singapore Management Univ Sch Comp & Informat Syst Singapore Singapore
This paper explores the problem of Generalist Anomaly Detection (GAD), aiming to train one single detection model that can generalize to detect anomalies in diverse datasets from different application domains without ... 详细信息
来源: 评论
EmoVIT: Revolutionizing Emotion Insights with Visual Instruction Tuning
EmoVIT: Revolutionizing Emotion Insights with Visual Instruc...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xie, Hongxia Peng, Chu-Jun Tseng, Yu-Wen Chen, Hung-Jen Hsu, Chan-Feng Shuai, Hong-Han Cheng, Wen-Huang Jilin Univ Changchun Peoples R China Natl Taiwan Univ Taipei Taiwan Natl Yang Ming Chiao Tung Univ Hsinchu Taiwan
Visual Instruction Tuning represents a novel learning paradigm involving the fine-tuning of pre-trained language models using task-specific instructions. This paradigm shows promising zero-shot results in various natu... 详细信息
来源: 评论
Enhanced Motion-Text Alignment for Image-to-Video Transfer Learning
Enhanced Motion-Text Alignment for Image-to-Video Transfer L...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Wei Wan, Chaoqun Liu, Tongliang Tian, Xinmei Shen, Xu Ye, Jieping Univ Sci & Technol China Hefei Peoples R China Alibaba Cloud Hangzhou Peoples R China Univ Sydney Sydney Australia Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei Peoples R China
Extending large image-text pre-trained models (e.g., CLIP) for video understanding has made significant advancements. To enable the capability of CLIP to perceive dynamic information in videos, existing works are dedi... 详细信息
来源: 评论
Language-driven Grasp Detection
Language-driven Grasp Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: An Dinh Vuong Minh Nhat Vu Baoru Huang Nghia Nguyen Hieu Le Thieu Vo Anh Nguyen FPT Software AI Ctr Hanoi Vietnam TU Wien Automat Control Inst Vienna Austria Imperial Coll London London England Ton Duc Thang Univ Ho Chi Minh City Vietnam Univ Liverpool Liverpool Merseyside England
Grasp detection is a persistent and intricate challenge with various industrial applications. Recently, many methods and datasets have been proposed to tackle the grasp detection problem. However, most of them do not ... 详细信息
来源: 评论
Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild
Scaling Up to Excellence: Practicing Model Scaling for Photo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yu, Fanghua Gu, Jinjin Li, Zheyuan Liu, Jinfan Kong, Xiangtao Wang, Xintao He, Jingwen Qiao, Yu Dong, Chao Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China Shanghai AI Lab Shanghai Peoples R China Hong Kong Polytech Univ Hong Kong Peoples R China Tencent PCG ARC Lab Hangzhou Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
We introduce SUPIR (Scaling-UP Image Restoration), a groundbreaking image restoration method that harnesses generative prior and the power of model scaling up. Leveraging multi-modal techniques and advanced generative... 详细信息
来源: 评论
Purposeful Regularization with Reinforcement Learning for Facial Expression recognition In-the-Wild
Purposeful Regularization with Reinforcement Learning for Fa...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hong, SangHwa Seoul Natl Univ Sci & Technol Dept Ind Engn Gongreung Ro 232 Seoul South Korea
Facial Expression recognition (FER), an essential aspect of emotion analysis through artificial intelligence, is a crucial research area. Although traditional approaches utilizing Convolutional Neural Networks (CNNs) ... 详细信息
来源: 评论