咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,273 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是461-470 订阅
排序:
LANA: A Language-Capable Navigator for Instruction Following and Generation
LANA: A Language-Capable Navigator for Instruction Following...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Xiaohan Wang, Wenguan Shao, Jiayi Yang, Yi Zhejiang Univ CCAI Hangzhou Peoples R China
Recently, visual-language navigation (VLN) - entailing robot agents to follow navigation instructions - has shown great advance. However, existing literature put most emphasis on interpreting instructions into actions... 详细信息
来源: 评论
Towards Efficient Use of Multi-Scale Features in Transformer-Based Object Detectors
Towards Efficient Use of Multi-Scale Features in Transformer...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Gongjie Luo, Zhipeng Tian, Zichen Zhang, Jingyi Zhang, Xiaoqin Lu, Shijian Nanyang Technol Univ S Lab Singapore Singapore Black Sesame Technol Singapore Singapore SenseTime Res Hong Kong Peoples R China Wenzhou Univ Wenzhou Peoples R China
Multi-scale features have been proven highly effective for object detection but often come with huge and even prohibitive extra computation costs, especially for the recent Transformer-based detectors. In this paper, ... 详细信息
来源: 评论
X-3D: Explicit 3D Structure Modeling for Point Cloud recognition
X-3D: Explicit 3D Structure Modeling for Point Cloud Recogni...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sun, Shuofeng Rao, Yongming Lu, Jiwen Yan, Haibin Beijing Univ Posts & Telecommun Beijing Peoples R China Tencent Shenzhen Peoples R China Tsinghua Univ Beijing Peoples R China
Numerous prior studies predominantly emphasize constructing relation vectors for individual neighborhood points and generating dynamic kernels for each vector and embedding these into high-dimensional spaces to captur... 详细信息
来源: 评论
LEOD: Label-Efficient Object Detection for Event Cameras
LEOD: Label-Efficient Object Detection for Event Cameras
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wu, Ziyi Gehrig, Mathias Lyu, Qing Liu, Xudong Gilitschenski, Igor Univ Toronto Toronto ON Canada Vector Inst Toronto ON Canada Univ Zurich Zurich Switzerland
Object detection with event cameras benefits from the sensor's low latency and high dynamic range. However, it is costly to fully label event streams for supervised training due to their high temporal resolution. ... 详细信息
来源: 评论
SOK-Bench: A Situated Video Reasoning Benchmark with Aligned Open-World Knowledge
SOK-Bench: A Situated Video Reasoning Benchmark with Aligned...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Andong Wu, Bo Chen, Sunli Chen, Zhenfang Guan, Haotian Lee, Wei-Ning Li, Li Erran Gan, Chuang Univ Hong Kong Hong Kong Peoples R China MIT IBM Watson AI Lab Cambridge MA USA Tsinghua Univ Beijing Peoples R China AWS AI Seattle WA USA UMass Amherst Amherst MA USA
Learning commonsense reasoning from visual contexts and scenes in real-world is a crucial step toward advanced artificial intelligence. However, existing video reasoning benchmarks are still inadequate since they were... 详细信息
来源: 评论
InternVL: Scaling up vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks
InternVL: Scaling up Vision Foundation Models and Aligning f...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Zhe Wu, Jiannan Wang, Wenhai Su, Weijie Chen, Guo Xing, Sen Zhong, Muyan Zhang, Qinglong Zhu, Xizhou Lu, Lewei Li, Bin Luo, Ping Lu, Tong Qiao, Yu Dai, Jifeng Shanghai AI Lab OpenGVLab Shanghai Peoples R China Nanjing Univ Nanjing Peoples R China Univ Hong Kong Hong Kong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Tsinghua Univ Beijing Peoples R China Univ Sci & Technol China Hefei Peoples R China SenseTime Res Hong Kong Peoples R China Shanghai AI Lab Shanghai Peoples R China
The exponential growth of large language models (LLMs) has opened up numerous possibilities for multi-modal AGI systems. However, the progress in vision and vision-language foundation models, which are also critical e... 详细信息
来源: 评论
Real-World Mobile Image Denoising Dataset with Efficient Baselines
Real-World Mobile Image Denoising Dataset with Efficient Bas...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Flepp, Roman Ignatov, Andrey Timofte, Radu Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Univ Wurzburg Comp Vis Lab Wurzburg Germany AI Witchlabs Ltd Zollikerberg Switzerland
The recently increased role of mobile photography has raised the standards of on-device photo processing tremendously. Despite the latest advancements in camera hardware, the mobile camera sensor area cannot be increa... 详细信息
来源: 评论
ST2ST: Self-Supervised Test-time Adaptation for Video Action recognition
ST2ST: Self-Supervised Test-time Adaptation for Video Action...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Fahim, Masud An-Nur Islam Innat, Mohammed Boutellier, Jani Univ Vaasa Vaasa Finland Khulna Univ Engn & Technol KUET Khulna Bangladesh
The performance of trained deep neural network (DNN) models relies on the assumption that the test data has largely the same feature distribution as the training data. In deployed video recognition systems, the featur... 详细信息
来源: 评论
Generating Diverse Agricultural Data for vision-Based Farming Applications
Generating Diverse Agricultural Data for Vision-Based Farmin...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cieslak, Mikolaj Govindarajan, Umabharathi Garcia, Alejandro Chandrashekar, Anuradha Haedrich, Torsten Mendoza-Drosik, Aleksander Michels, Dominik L. Pirk, Soeren Fu, Chia-Chun Palubicki, Wojciech GreenMatterAI Berlin Germany Blue River Technol Santa Clara CA USA King Abdullah Univ Sci & Technol Thuwal Saudi Arabia Tech Univ Darmstadt Darmstadt Germany Christian Albrecht Univ Kiel Kiel Germany Adam Mickiewicz Univ Poznan Poland
We present a specialized procedural model for generating synthetic agricultural scenes, focusing on soybean crops, along with various weeds. The model simulates distinct growth stages of these plants, diverse soil con...
来源: 评论
IDGI: A Framework to Eliminate Explanation Noise from Integrated Gradients
IDGI: A Framework to Eliminate Explanation Noise from Integr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Ruo Wang, Binghui Bilgic, Mustafa IIT Dept Comp Sci Chicago IL 60616 USA
Integrated Gradients (IG) as well as its variants are well-known techniques for interpreting the decisions of deep neural networks. While IG-based approaches attain state-of-the-art performance, they often integrate n... 详细信息
来源: 评论