咨询与建议

限定检索结果

文献类型

  • 11,267 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,859 篇 工学
    • 7,418 篇 计算机科学与技术...
    • 799 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 224 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 航空宇航科学与技...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 297 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 24 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,274 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11281 条 记 录,以下是51-60 订阅
排序:
Semantic Shield: Defending vision-Language Models Against Backdooring and Poisoning via Fine-grained Knowledge Alignment
Semantic Shield: Defending Vision-Language Models Against Ba...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ishmam, Alvi Md Thomas, Christopher Virginia Tech Blacksburg VA 24061 USA
In recent years there has been enormous interest in vision-language models trained using self-supervised objectives. However, the use of large-scale datasets scraped from the web for training also makes these models v... 详细信息
来源: 评论
Training vision Transformers for Semi-Supervised Semantic Segmentation
Training Vision Transformers for Semi-Supervised Semantic Se...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hu, Xinting Jiang, Li Schiele, Bernt Max Planck Inst Informat Saarland Informat Campus Munich Germany
We present S(4)Former, a novel approach to training vision Transformers for Semi-Supervised Semantic Segmentation (S-4). At its core, S(4)Former employs a vision Transformer within a classic teacher-student framework,...
来源: 评论
3DInAction: Understanding Human Actions in 3D Point Clouds
3DInAction: Understanding Human Actions in 3D Point Clouds
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ben-Shabat, Yizhak Shrout, Oren Gould, Stephen Australian Natl Univ Canberra ACT Australia Technion Israel Inst Technol Haifa Israel
We propose a novel method for 3D point cloud action recognition. Understanding human actions in RGB videos has been widely studied in recent years, however, its 3D point cloud counterpart remains under-explored despit... 详细信息
来源: 评论
HumMUSS: Human Motion Understanding using State Space Models
HumMUSS: Human Motion Understanding using State Space Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mondal, Arnab Alletto, Stefano Tome, Denis Mila Montreal PQ Canada Apple Cupertino CA 95014 USA
Understanding human motion from video is essential for a range of applications, including pose estimation, mesh recovery and action recognition. While state-of-the-art methods predominantly rely on transformer-based a... 详细信息
来源: 评论
Learning Correlation Structures for vision Transformers
Learning Correlation Structures for Vision Transformers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kim, Manjin Seo, Paul Hongsuck Schmid, Cordelia Cho, Minsu POSTECH Pohang South Korea Korea Univ Seoul South Korea Google Res Mountain View CA USA
We introduce a new attention mechanism, dubbed structural self-attention (StructSA), that leverages rich correlation patterns naturally emerging in key-query interactions of attention. StructSA generates attention map... 详细信息
来源: 评论
PEEKABOO: Interactive Video Generation via Masked-Diffusion
PEEKABOO: Interactive Video Generation via Masked-Diffusion
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Jain, Yash Nasery, Anshul Vineet, Vibhav Behl, Harkirat Microsoft Redmond WA 98052 USA Univ Washington Seattle WA USA
Modern video generation models like Sora have achieved remarkable success in producing high-quality videos. However, a significant limitation is their inability to offer interactive control to users, a feature that pr... 详细信息
来源: 评论
VLP: vision Language Planning for Autonomous Driving
VLP: Vision Language Planning for Autonomous Driving
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Pan, Chenbin Yaman, Burhaneddin Nesti, Tommaso Mallik, Abhirup Allievi, Alessandro G. Velipasalar, Senem Rene, Liu Syracuse Univ Syracuse NY USA Bosch Res North Amer & Bosch Ctr Artificial Intel Sunnyvale CA 94085 USA
Autonomous driving is a complex and challenging task that aims at safe motion planning through scene understanding and reasoning. While vision-only autonomous driving methods have recently achieved notable performance... 详细信息
来源: 评论
MULTIFLOW: Shifting Towards Task-Agnostic vision-Language Pruning
MULTIFLOW: Shifting Towards Task-Agnostic Vision-Language Pr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Farina, Matteo Mancini, Massimiliano Cunegatti, Elia Liu, Gaowen Iacca, Giovanni Ricci, Elisa Univ Trento Trento Italy Cisco Res Res Triangle Pk NC USA Fdn Bruno Kessler Povo Italy
While excellent in transfer learning, vision-Language models (VLMs) come with high computational costs due to their large number of parameters. To address this issue, removing parameters via model pruning is a viable ... 详细信息
来源: 评论
Contrasting intra-modal and ranking cross-modal hard negatives to enhance visio-linguistic compositional understanding
Contrasting intra-modal and ranking cross-modal hard negativ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Le Awal, Rabiul Agrawal, Aishwarya Mila Quebec AI Inst Montreal PQ Canada Univ Montreal Montreal PQ Canada Canada CIFAR AI Chair Montreal PQ Canada
vision-Language Models (VLMs), such as CLIP, exhibit strong image-text comprehension abilities, facilitating advances in several downstream tasks such as zero-shot image classification, image-text retrieval, and text-... 详细信息
来源: 评论
Object recognition as Next Token Prediction
Object Recognition as Next Token Prediction
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yue, Kaiyu Chen, Bor-Chun Geiping, Jonas Li, Hengduo Goldstein, Tom Lim, Ser-Nam Meta Menlo Pk CA 94025 USA Univ Maryland College Pk MD 20742 USA ELLIS Inst Tubingen Germany MPI IS Tubingen Tubingen Germany Univ Cent Florida Orlando FL 32816 USA Meta AI Menlo Pk CA USA
We present an approach to pose object recognition as next token prediction. The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels. To ground this ... 详细信息
来源: 评论