咨询与建议

限定检索结果

文献类型

  • 11,268 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,282 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,860 篇 工学
    • 7,419 篇 计算机科学与技术...
    • 800 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 225 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 3 篇 航空宇航科学与技...
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 298 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,261 篇 英文
  • 20 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11282 条 记 录,以下是651-660 订阅
排序:
Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection
Ambiguity-Resistant Semi-Supervised Learning for Dense Objec...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Chang Zhang, Weiming Lin, Xiangru Zhang, Wei Tan, Xiao Han, Junyu Li, Xiaomao Ding, Errui Wang, Jingdong Shanghai Univ Shanghai Peoples R China Baidu Inc Beijing Peoples R China Shanghai Artificial Intelligence Lab Shanghai Peoples R China
With basic Semi-Supervised Object Detection (SSOD) techniques, one-stage detectors generally obtain limited promotions compared with two-stage clusters. We experimentally find that the root lies in two kinds of ambigu... 详细信息
来源: 评论
Activating More Pixels in Image Super-Resolution Transformer
Activating More Pixels in Image Super-Resolution Transformer
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Xiangyu Wang, Xintao Zhou, Jiantao Qiao, Yu Dong, Chao Univ Macau State Key Lab Internet Things Smart City Zhuhai Peoples R China Chinese Acad Sci Shenzhen Key Lab Comp Vis & Pattern Recognit Shenzhen Inst Adv Technol Beijing Peoples R China Shanghai Artificial Intelligence Lab Shanghai Peoples R China Tencent PCG ARC Lab Shenzhen Peoples R China
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution. However, we find that these networks can only utilize a limited spatial range of input information... 详细信息
来源: 评论
Practical Network Acceleration with Tiny Sets
Practical Network Acceleration with Tiny Sets
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Guo-Hua Wu, Jianxin Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China
Due to data privacy issues, accelerating networks with tiny training sets has become a critical need in practice. Previous methods mainly adopt filter-level pruning to accelerate networks with scarce training samples.... 详细信息
来源: 评论
Phase-Shifting Coder: Predicting Accurate Orientation in Oriented Object Detection
Phase-Shifting Coder: Predicting Accurate Orientation in Ori...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yu, Yi Da, Feipeng Southeast Univ Sch Automat Nanjing Peoples R China Southeast Univ Minist Educ Key Lab Measurement & Control Complex Syst Engn Nanjing Peoples R China
With the vigorous development of computer vision, oriented object detection has gradually been featured. In this paper, a novel differentiable angle coder named phase-shifting coder (PSC) is proposed to accurately pre... 详细信息
来源: 评论
VMRNN: Integrating vision Mamba and LSTM for Efficient and Accurate Spatiotemporal Forecasting
VMRNN: Integrating Vision Mamba and LSTM for Efficient and A...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tang, Yujin Dong, Peijie Tang, Zhenheng Chu, Xiaowen Liang, Junwei Hong Kong Univ Sci & Technol Guangzhou AI Thrust Guangzhou Peoples R China Hong Kong Univ Sci & Technol Guangzhou DSA Thrust Guangzhou Peoples R China Hong Kong Baptist Univ Dept Comp Sci Hong Kong Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China
Combining Convolutional Neural Networks (CNNs) or vision Transformers(ViTs) with Recurrent Neural Networks (RNNs) for spatiotemporal forecasting has yielded unparalleled results in predicting temporal and spatial dyna... 详细信息
来源: 评论
Data-efficient Large Scale Place recognition with Graded Similarity Supervision
Data-efficient Large Scale Place Recognition with Graded Sim...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Leyva-Vallina, Maria Strisciuglio, Nicola Petkov, Nicolai Univ Groningen Groningen Netherlands Univ Twente Enschede Netherlands
Visual place recognition (VPR) is a fundamental task of computer vision for visual localization. Existing methods are trained using image pairs that either depict the same place or not. Such a binary indication does n... 详细信息
来源: 评论
Segment Anything Model for Road Network Graph Extraction
Segment Anything Model for Road Network Graph Extraction
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hetang, Congrui Xue, Haoru Le, Cindy Yue, Tianwei Wang, Wenping He, Yihui Carnegie Mellon Univ Pittsburgh PA 15213 USA Columbia Univ New York NY USA
We propose SAM-Road, an adaptation of the Segment Anything Model (SAM) [27] for extracting large-scale, vectorized road network graphs from satellite imagery. To predict graph geometry, we formulate it as a dense sema... 详细信息
来源: 评论
AsyFOD: An Asymmetric Adaptation Paradigm for Few-Shot Domain Adaptive Object Detection
AsyFOD: An Asymmetric Adaptation Paradigm for Few-Shot Domai...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gao, Yipeng Lin, Kun-Yu Yan, Junkai Wang, Yaowei Zheng, Wei-Shi Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China Pengcheng Lab Shenzhen Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Beijing Peoples R China
In this work, we study few-shot domain adaptive object detection (FSDAOD), where only a few target labeled images are available for training in addition to sufficient source labeled images. Critically, in FSDAOD, the ... 详细信息
来源: 评论
vision Transformers Are Good Mask Auto-Labelers
Vision Transformers Are Good Mask Auto-Labelers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lan, Shiyi Yang, Xitong Yu, Zhiding Wu, Zuxuan Alvarez, Jose M. Anandkumar, Anima NVIDIA Santa Clara CA 95051 USA Meta AI FAIR London England Fudan Univ Shanghai Peoples R China CALTECH Pasadena CA USA
We propose Mask Auto-Labeler (MAL), a high-quality Transformer-based mask auto-labeling framework for instance segmentation using only box annotations. MAL takes box-cropped images as inputs and conditionally generate... 详细信息
来源: 评论
Spectral Bayesian Uncertainty for Image Super-resolution
Spectral Bayesian Uncertainty for Image Super-resolution
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Tao Cheng, Jun Tan, Shan Huazhong Univ Sci & Technol Wuhan Peoples R China
Recently deep learning techniques have significantly advanced image super-resolution (SR). Due to the black-box nature, quantifying reconstruction uncertainty is crucial when employing these deep SR networks. Previous... 详细信息
来源: 评论