咨询与建议

限定检索结果

文献类型

  • 11,268 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,282 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,860 篇 工学
    • 7,419 篇 计算机科学与技术...
    • 800 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 225 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 3 篇 航空宇航科学与技...
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 298 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,261 篇 英文
  • 20 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11282 条 记 录,以下是701-710 订阅
排序:
Light Source Separation and Intrinsic Image Decomposition under AC Illumination
Light Source Separation and Intrinsic Image Decomposition un...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yoshida, Yusaku Kawahara, Ryo Okabe, Takahiro Kyushu Inst Technol Dept Artificial Intelligence 680-4 Kawazu Iizuka Fukuoka 8208502 Japan
Artificial light sources are often powered by an electric grid, and then their intensities rapidly oscillate in response to the grid's alternating current (AC). Interestingly, the flickers of scene radiance values... 详细信息
来源: 评论
PartMix: Regularization Strategy to Learn Part Discovery for Visible-Infrared Person Re-identification
PartMix: Regularization Strategy to Learn Part Discovery for...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kim, Minsu Kim, Seungryong Park, Jungin Park, Seongheon Sohn, Kwanghoon Yonsei Univ Seoul South Korea Korea Univ Seoul South Korea Korea Inst Sci & Technol Seoul South Korea
Modern data augmentation using a mixture-based technique can regularize the models from overfitting to the training data in various computer vision applications, but a proper data augmentation technique tailored for t... 详细信息
来源: 评论
Two-way Multi-Label Loss
Two-way Multi-Label Loss
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kobayashi, Takumi Natl Inst Adv Ind Sci & Technol Tokyo Japan Univ Tsukuba Tsukuba Japan
A natural image frequently contains multiple classification targets, accordingly providing multiple class labels rather than a single label per image. While the single-label classification is effectively addressed by ... 详细信息
来源: 评论
X-Pruner: eXplainable Pruning for vision Transformers
X-Pruner: eXplainable Pruning for Vision Transformers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yu, Lu Xiang, Wei James Cook Univ Townsville Australia La Trobe Univ Melbourne Australia
Recently vision transformer models have become prominent models for a range of tasks. These models, however, usually suffer from intensive computational costs and heavy memory requirements, making them impractical for... 详细信息
来源: 评论
Weakly Supervised Video Emotion Detection and Prediction via Cross-Modal Temporal Erasing Network
Weakly Supervised Video Emotion Detection and Prediction via...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Zhicheng Wang, Lijuan Yang, Jufeng Nankai Univ Coll Comp Sci TMCC Tianjin Peoples R China
Automatically predicting the emotions of user-generated videos (UGVs) receives increasing interest recently. However, existing methods mainly focus on a few key visual frames, which may limit their capacity to encode ... 详细信息
来源: 评论
Knowledge Distillation for Efficient Instance Semantic Segmentation with Transformers
Knowledge Distillation for Efficient Instance Semantic Segme...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Maohui Halstead, Michael McCool, Chris Univ Bonn Bonn Germany Lamarr Inst Machine Learning & Artificial Intelli Dortmund Germany
Instance-based semantic segmentation provides detailed per-pixel scene understanding information crucial for both computer vision and robotics applications. However, state-of-the-art approaches such as Mask2Former are... 详细信息
来源: 评论
GIVL: Improving Geographical Inclusivity of vision-Language Models with Pre-Training Methods
GIVL: Improving Geographical Inclusivity of Vision-Language ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yin, Da Gao, Feng Thattai, Govind Johnston, Michael Chang, Kai -Wei Univ Calif Los Angeles Los Angeles CA 90095 USA Amazon Alexa AI Lexington MA USA
A key goal for the advancement of AI is to develop technologies that serve the needs not just of one group but of all communities regardless of their geographical region. In fact, a significant proportion of knowledge... 详细信息
来源: 评论
Prompt-Guided Zero-Shot Anomaly Action recognition using Pretrained Deep Skeleton Features
Prompt-Guided Zero-Shot Anomaly Action Recognition using Pre...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sato, Fumiaki Hachiuma, Ryo Sekii, Taiki Konica Minolta Inc Tokyo Japan
This study investigates unsupervised anomaly action recognition, which identifies video-level abnormal-human-behavior events in an unsupervised manner without abnormal samples, and simultaneously addresses three limit... 详细信息
来源: 评论
CAGE: Circumplex Affect Guided Expression Inference
CAGE: Circumplex Affect Guided Expression Inference
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wagner, Niklas Maetzler, Felix Vossberg, Samed R. Schneider, Helen Pavlitska, Svetlana Zoellner, J. Marius Karlsruhe Inst Technol KIT Karlsruhe Germany FZI Res Ctr Informat Technol Karlsruhe Germany
Understanding emotions and expressions is a task of interest across multiple disciplines, especially for improving user experiences. Contrary to the common perception, it has been shown that emotions are not discrete ... 详细信息
来源: 评论
SAFDNet: A Simple and Effective Network for Fully Sparse 3D Object Detection
SAFDNet: A Simple and Effective Network for Fully Sparse 3D ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Gang Chen, Junnan Gao, Guohuan Li, Jianmin Liu, Si Hu, Xiaolin Tsinghua Univ Inst AI Dept Comp Sci & Technol BNRist Beijing Peoples R China Huazhong Univ Sci & Technol Wuhan Peoples R China Beijing Inst Technol Beijing Peoples R China Beihang Univ Inst Artificial Intelligence Beijing Peoples R China Tsinghua Lab Brain & Intelligence THBI Beijing Peoples R China Chinese Inst Brain Res CIBR Beijing 100010 Peoples R China
LiDAR-based 3D object detection plays an essential role in autonomous driving. Existing high-performing 3D object detectors usually build dense feature maps in the backbone network and prediction head. However, the co... 详细信息
来源: 评论