咨询与建议

限定检索结果

文献类型

  • 11,268 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 11,282 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,860 篇 工学
    • 7,419 篇 计算机科学与技术...
    • 800 篇 机械工程
    • 390 篇 电气工程
    • 377 篇 软件工程
    • 225 篇 控制科学与工程
    • 68 篇 光学工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电子科学与技术(可...
    • 6 篇 交通运输工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 3 篇 航空宇航科学与技...
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
  • 3,103 篇 医学
    • 3,102 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 298 篇 理学
    • 199 篇 系统科学
    • 69 篇 物理学
    • 27 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 23 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 5,461 篇 computer vision
  • 2,564 篇 training
  • 2,118 篇 pattern recognit...
  • 1,632 篇 computational mo...
  • 1,454 篇 visualization
  • 1,325 篇 three-dimensiona...
  • 1,070 篇 semantics
  • 972 篇 codes
  • 968 篇 benchmark testin...
  • 930 篇 computer archite...
  • 885 篇 deep learning
  • 831 篇 task analysis
  • 729 篇 feature extracti...
  • 541 篇 conferences
  • 530 篇 neural networks
  • 526 篇 face recognition
  • 503 篇 transformers
  • 480 篇 object detection
  • 478 篇 image segmentati...
  • 469 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 146 篇 tsinghua univ pe...
  • 142 篇 univ chinese aca...
  • 142 篇 carnegie mellon ...
  • 132 篇 chinese univ hon...
  • 122 篇 peng cheng lab p...
  • 102 篇 zhejiang univ pe...
  • 96 篇 sensetime res pe...
  • 95 篇 swiss fed inst t...
  • 90 篇 shanghai ai lab ...
  • 86 篇 tsinghua univers...
  • 86 篇 stanford univ st...
  • 84 篇 shanghai jiao to...
  • 80 篇 zhejiang univers...
  • 79 篇 alibaba grp peop...
  • 79 篇 univ hong kong p...
  • 76 篇 peng cheng labor...
  • 76 篇 tech univ munich...
  • 74 篇 australian natl ...
  • 73 篇 peking univ peop...

作者

  • 67 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 loy chen change
  • 36 篇 tao dacheng
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,261 篇 英文
  • 20 篇 其他
  • 1 篇 中文
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020"
11282 条 记 录,以下是751-760 订阅
排序:
Adversarial Normalization: I Can visualize Everything (ICE)
Adversarial Normalization: I Can visualize Everything (ICE)
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Choi, Hoyoung Jin, Seungwan Han, Kyungsik Hanyang Univ Seoul South Korea
vision transformers use [CLS] tokens to predict image classes. Their explainability visualization has been studied using relevant information from [CLS] tokens or focusing on attention scores during self-attention. Su... 详细信息
来源: 评论
Are Data-driven Explanations Robust against Out-of-distribution Data?
Are Data-driven Explanations Robust against Out-of-distribut...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Tang Qiao, Fenuchun Ma, Mengmeng Peng, Xi Univ Delaware Newark DE 19716 USA
As black-box models increasingly power high-stakes applications, a variety of data-driven explanation methods have been introduced. Meanwhile, machine learning models are constantly challenged by distributional shifts... 详细信息
来源: 评论
Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked Modeling for vision Decoding
Seeing Beyond the Brain: Conditional Diffusion Model with Sp...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Zijiao Qing, Jiaxin Xiang, Tiange Yue, Wan Lin Zhou, Juan Helen Natl Univ Singapore Singapore Singapore Chinese Univ Hong Kong Hong Kong Peoples R China Stanford Univ Stanford CA USA
Decoding visual stimuli from brain recordings aims to deepen our understanding of the human visual system and build a solid foundation for bridging human and computer vision through the Brain-computer Interface. Howev... 详细信息
来源: 评论
Hierarchical Temporal Transformer for 3D Hand Pose Estimation and Action recognition from Egocentric RGB Videos
Hierarchical Temporal Transformer for 3D Hand Pose Estimatio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wen, Yilin Pan, Hao Yang, Lei Pan, Jia Komura, Taku Wang, Wenping Univ Hong Kong Hong Kong Peoples R China Microsoft Res Asia Beijing Peoples R China TransGP Hong Kong Peoples R China Texas A&M Univ College Stn TX USA
Understanding dynamic hand motions and actions from egocentric RGB videos is a fundamental yet challenging task due to self-occlusion and ambiguity. To address occlusion and ambiguity, we develop a transformer-based f... 详细信息
来源: 评论
SemiCVT: Semi-Supervised Convolutional vision Transformer for Semantic Segmentation
SemiCVT: Semi-Supervised Convolutional Vision Transformer fo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Huang, Huimin Xie, Shiao Lin, Lanfen Tong, Ruofeng Chen, Yen-Wei Li, Yuexiang Wang, Hong Huang, Yawen Zheng, Yefeng Zhejiang Univ Hangzhou Peoples R China Zhejiang Lab Hangzhou Peoples R China Ritsumeikan Univ Kyoto Japan Tencent Jarvis Lab Shenzhen Peoples R China
Semi-supervised learning improves data efficiency of deep models by leveraging unlabeled samples to alleviate the reliance on a large set of labeled samples. These successes concentrate on the pixel-wise consistency b... 详细信息
来源: 评论
STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action recognition
STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Ac...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Xiaoyu Huang, Po-Yao Liang, Junwei de Melo, Celso M. Hauptmann, Alexander Carnegie Mellon Univ Pittsburgh PA 15213 USA Meta AI FAIR New York NY USA HKUST Guangzhou Guangzhou Peoples R China DEVCOM Army Res Lab Adelphi MD USA
We study the problem of human action recognition using motion capture (MoCap) sequences. Unlike existing techniques that take multiple manual steps to derive standardized skeleton representations as model input, we pr... 详细信息
来源: 评论
Beyond Appearances: Material Segmentation with Embedded Spectral Information from RGB-D imagery
Beyond Appearances: Material Segmentation with Embedded Spec...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Perez, Fabian Rueda-Chacon, Hoover Univ Ind Santander Bucaramanga Colombia
In the realm of computer vision, material segmentation of natural scenes represents a challenge, driven by the complex and diverse appearances of materials. Traditional approaches often rely on RGB images, which can b... 详细信息
来源: 评论
Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning
Gradient-based Uncertainty Attribution for Explainable Bayes...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Hanjing Joshi, Dhiraj Wang, Shiqiang Ji, Qiang Rensselaer Polytech Inst Troy NY 12180 USA IBM Res Armonk NY USA
Predictions made by deep learning models are prone to data perturbations, adversarial attacks, and out-of-distribution inputs. To build a trusted AI system, it is therefore critical to accurately quantify the predicti... 详细信息
来源: 评论
Decoupling MaxLogit for Out-of-Distribution Detection
Decoupling MaxLogit for Out-of-Distribution Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Zihan Xiang, Xiang Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Key Lab Image Proc & Intelligent Control Minist Educ Wuhan Peoples R China
In machine learning, it is often observed that standard training outputs anomalously high confidence for both indistribution (ID) and out-of-distribution (OOD) data. Thus, the ability to detect OOD samples is critical... 详细信息
来源: 评论
ScaleDet: A Scalable Multi-Dataset Object Detector
ScaleDet: A Scalable Multi-Dataset Object Detector
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Yanbei Wang, Manchen Mittal, Abhay Xu, Zhenlin Favaro, Paolo Tighe, Joseph Modolo, Davide AWS AI Labs Shanghai Peoples R China
Multi-dataset training provides a viable solution for exploiting heterogeneous large-scale datasets without extra annotation cost. In this work, we propose a scalable multi-dataset detector (ScaleDet) that can scale u... 详细信息
来源: 评论