咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是211-220 订阅
排序:
DeCAtt: Efficient vision Transformers with Decorrelated Attention Heads
DeCAtt: Efficient Vision Transformers with Decorrelated Atte...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Bhattacharyya, Mayukh Chattopadhyay, Soumitri Nag, Sayan Stony Brook University United States Jadavpur University India University of Toronto Canada
The advent of vision Transformers (ViT) has led to significant performance gains across various computer vision tasks over the last few years, surpassing the de facto standard CNN architectures. However, most of the p... 详细信息
来源: 评论
Pose Tutor: An Explainable System for Pose Correction in the Wild
Pose Tutor: An Explainable System for Pose Correction in the...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dittakavi, Bhat Bavikadi, Divyagna Desai, Sai Vikas Chakraborty, Soumi Reddy, Nishant Balasubramanian, Vineeth N. Callepalli, Bharathi Sharma, Ayon IIT Hyderabad Hyderabad Telangana India Variance AI Hyderabad India
Under the new norm of working from home, demand for fitness from home is on the rise. Different exercise forms solve different fitness needs for different people. Yoga gives flexibility and relieves stress. Pilates st... 详细信息
来源: 评论
Alleviating Representational Shift for Continual Fine-tuning
Alleviating Representational Shift for Continual Fine-tuning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jie, Shibo Deng, Zhi-Hong Li, Ziheng Peking Univ Sch Artificial Intelligence Beijing Peoples R China
We study a practical setting of continual learning: fine-tuning on a pre-trained model continually. Previous work has found that, when training on new tasks, the features (penultimate layer representations) of previou... 详细信息
来源: 评论
Multi-view Multi-label Canonical Correlation Analysis for Cross-modal Matching and Retrieval
Multi-view Multi-label Canonical Correlation Analysis for Cr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sanghavi, Rushil Verma, Yashaswi IIT Jodhpur Jodhpur Rajasthan India
In this paper, we address the problem of cross-modal retrieval in presence of multi-view and multi-label data. For this, we present Multi-view Multi-label Canonical Correlation Analysis (or MVMLCCA), which is a genera... 详细信息
来源: 评论
Ensemble Spatial and Temporal vision Transformer for Action Units Detection
Ensemble Spatial and Temporal Vision Transformer for Action ...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Tu Vu, Ngoc Thong Huynh, Van Nghia Nguyen, Trong Kim, Soo-Hyung Chonnam National University Department of Ai Convergence Korea Republic of
Facial Action Units detection (FAUs) represents a fine-grained classification problem that involves identifying different units on the human face, as defined by the Facial Action Coding System. In this paper, we prese... 详细信息
来源: 评论
NTIRE 2022 Challenge on Learning the Super-Resolution Space
NTIRE 2022 Challenge on Learning the Super-Resolution Space
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lugmayr, Andreas Danelljan, Martin Timofte, Radu Kim, Kang-wook Kim, Younggeun Lee, Jae-young Li, Zechao Pan, Jinshan Shim, Dongseok Song, Ki-Ung Tang, Jinhui Wang, Cong Zhao, Zhihao Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland
This paper reviews the NTIRE 2022 challenge on learning the super-Resolution space. This challenge aims to raise awareness that the super-resolution problem is ill-posed. Since many high-resolution images map to the s... 详细信息
来源: 评论
CorrGAN: Input Transformation Technique Against Natural Corruptions
CorrGAN: Input Transformation Technique Against Natural Corr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Haque, Mirazul Budnik, Christof J. Yang, Wei UT Dallas Richardson TX 75080 USA Siemens Corp Technol Princeton NJ USA
Because of the increasing accuracy of Deep Neural Networks (DNNs) on different tasks, a lot of real times systems are utilizing DNNs. These DNNs are vulnerable to adversarial perturbations and corruptions. Specificall... 详细信息
来源: 评论
Gated Recurrent Unit-Based RNN for Remote Photoplethysmography Signal Segmentation
Gated Recurrent Unit-Based RNN for Remote Photoplethysmograp...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sabour, Rita Meziati Benezeth, Yannick Univ Bourgogne Franche Comte Dijon France Univ Bourgogne Franche Comte ImViA Lab Dijon France
Remote Photoplethysmography (rPPG) enables quantifying blood volume variations in the skin tissues from an input video recording, using a regular RGB camera. Obtained pulse signals often contain noisy portions due to ... 详细信息
来源: 评论
Neural Image Recolorization for Creative Domains
Neural Image Recolorization for Creative Domains
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Boyi Belongie, Serge Lim, Ser-nam Davis, Abe Cornell Univ Ithaca NY 14853 USA Univ Copenhagen Copenhagen Denmark Meta AI New York NY USA
We present a self-supervised approach to recolorization of images from design-oriented domains. Our approach can recolor images based on image exemplars or target color palettes provided by a user. In contrast with pr... 详细信息
来源: 评论
Scene Representation in Bird's-Eye View from Surrounding Cameras with Transformers
Scene Representation in Bird's-Eye View from Surrounding Cam...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Yun Zhang, Yu Gong, Zhan Zhu, Hong Inspur Elect Informat Ind Co Ltd Dept AI & HPC Beijing Peoples R China
Scene representation in the bird's-eye-view (BEV) coordinate frame provides a succinct and effective way to understand surrounding environments for autonomous vehicles and robotics. In this work, we present an end... 详细信息
来源: 评论