咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是231-240 订阅
排序:
CarlaScenes: A synthetic dataset for odometry in autonomous driving
CarlaScenes: A synthetic dataset for odometry in autonomous ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kloukiniotis, Andreas Papandreou, Andreas Anagnostopoulos, Christos Lalos, Aris Kapsalas, Petros Nguyen, D-, V Moustakas, Konstantinos Univ Patras Patras Greece ISI Ind Syst Inst Patras Patras Greece Panasonic Automot Langen Germany
Despite the great scientific effort to capture adequately the complex environments in which autonomous vehicles (AVs) operate there are still use-cases that even SoA methods fail to handle. Specifically in odometry pr... 详细信息
来源: 评论
Patch-wise Contrastive Style Learning for Instagram Filter Removal
Patch-wise Contrastive Style Learning for Instagram Filter R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kinli, Furkan Ozcan, Baris Kirac, Furkan Ozyegin Univ Vis & Graph Lab Video Istanbul Turkey
Image-level corruptions and perturbations degrade the performance of CNNs on different downstream vision tasks. Social media filters are one of the most common resources of various corruptions and perturbations for re... 详细信息
来源: 评论
A Neural-network Enhanced Video Coding Framework beyond VVC
A Neural-network Enhanced Video Coding Framework beyond VVC
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Junru Li, Yue Lin, Chaoyi Zhang, Kai Zhang, Li Bytedance Inc Multimedia Lab San Diego CA 92122 USA
This paper presents a hybrid video compression framework, aiming at providing a demonstration of applying deep learning-based approaches beyond conventional coding framework. The proposed hybrid framework is establish... 详细信息
来源: 评论
From Less to More: Spectral Splitting and Aggregation Network for Hyperspectral Face Super-Resolution
From Less to More: Spectral Splitting and Aggregation Networ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jiang, Junjun Wang, Chenyang Liu, Xianming Jiang, Kui Ma, Jiayi Harbin Inst Technol Harbin Peoples R China Wuhan Univ Wuhan Peoples R China
High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions, such as low-light environment and spoofing attacks. However, the dense spectra... 详细信息
来源: 评论
Semantically Grounded Visual Embeddings for Zero-Shot Learning
Semantically Grounded Visual Embeddings for Zero-Shot Learni...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Nawaz, Shah Cavazza, Jacopo Del Bue, Alessio Ist Italiano Tecnol IIT Pattern Anal & Comp Vis PAVIS Genoa Italy Ist Italiano Tecnol IIT Visual Geometry & Modelling VGM Genoa Italy Deutsch Elektronen Synchrotron DESY Hamburg Germany
Zero-shot learning methods rely on fixed visual and semantic embeddings, extracted from independent vision and language models, both pre-trained for other large-scale tasks. This is a weakness of current zero-shot lea... 详细信息
来源: 评论
Out-Of-Distribution Detection In Unsupervised Continual Learning
Out-Of-Distribution Detection In Unsupervised Continual Lear...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: He, Jiangpeng Zhu, Fengqing Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA
Unsupervised continual learning aims to learn new tasks incrementally without requiring human annotations. However, most existing methods, especially those targeted on image classification, only work in a simplified s... 详细信息
来源: 评论
SymDNN: Simple & Effective Adversarial Robustness for Embedded Systems
SymDNN: Simple & Effective Adversarial Robustness for Embedd...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dey, Swarnava Dasgupta, Pallab Chakrabarti, Partha P. Indian Inst Technol Kharagpur Kharagpur 721302 W Bengal India
We propose SymDNN, a Deep Neural Network (DNN) inference scheme, to segment an input image into small patches, replace those patches with representative symbols, and use the reconstructed image for CNN inference. This... 详细信息
来源: 评论
Continual Domain Adaptation through Pruning-aided Domain-specific Weight Modulation
Continual Domain Adaptation through Pruning-aided Domain-spe...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Prasanna, B. Sanyal, Sunandini Babu, R. Venkatesh Indian Institute of Science Vision and Ai Lab Bengaluru India
In this paper, we propose to develop a method to address unsupervised domain adaptation (UDA) in a practical setting of continual learning (CL). The goal is to update the model on continually changing domains while pr... 详细信息
来源: 评论
GLaMa: Joint Spatial and Frequency Loss for General Image Inpainting
GLaMa: Joint Spatial and Frequency Loss for General Image In...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lu, Zeyu Jiang, Junjun Huang, Junqin Wu, Gang Liu, Xianming Harbin Inst Technol Harbin Peoples R China Beihang Univ Beijing Peoples R China
The purpose of image inpainting is to recover scratches and damaged areas using context information from remaining parts. In recent years, thanks to the resurgence of convolutional neural networks (CNNs), image inpain... 详细信息
来源: 评论
When NAS Meets Trees: An Efficient Algorithm for Neural Architecture Search
When NAS Meets Trees: An Efficient Algorithm for Neural Arch...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Qian, Guocheng Zhang, Xuanyang Li, Guohao Zhao, Chen Chen, Yukang Zhang, Xiangyu Ghanem, Bernard Sun, Jian King Abdullah Univ Sci & Technol KAUST Thuwal Saudi Arabia MEGVII Technol Beijing Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
The key challenge in neural architecture search (NAS) is designing how to explore wisely in the huge search space. We propose a new NAS method called TNAS (NAS with trees), which improves search efficiency by explorin... 详细信息
来源: 评论