咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是301-310 订阅
排序:
vision Transformers with Mixed-Resolution Tokenization
Vision Transformers with Mixed-Resolution Tokenization
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Ronen, Tomer Levy, Omer Golbert, Avram Tel Aviv University Israel Google Research
vision Transformer models process input images by dividing them into a spatially regular grid of equal-size patches. Conversely, Transformers were originally introduced over natural language sequences, where each toke... 详细信息
来源: 评论
Unpaired Real-World Super-Resolution with Pseudo Controllable Restoration
Unpaired Real-World Super-Resolution with Pseudo Controllabl...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Romero, Andres Van Gool, Luc Timofte, Radu Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Katholieke Univ Leuven Leuven Belgium Univ Wurzburg Wurzburg Germany
Current super-resolution methods rely on the bicubic down-sampling assumption in order to develop the ill-posed reconstruction of the low-resolution image. Not surprisingly, these approaches fail when using real-world... 详细信息
来源: 评论
SPIN: Simplifying Polar Invariance for Neural networks Application to vision-based irradiance forecasting
SPIN: Simplifying Polar Invariance for Neural networks Appli...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Paletta, Quentin Hu, Anthony Arbod, Guillaume Blanc, Philippe Lasenby, Joan Univ Cambridge Cambridge England ENGIE Lab CRIGEN Stains France MINES ParisTech Paris France
Translational invariance induced by pooling operations is an inherent property of convolutional neural networks, which facilitates numerous computer vision tasks such as classification. Yet to leverage rotational inva... 详细信息
来源: 评论
Video Action Detection: Analysing Limitations and Challenges
Video Action Detection: Analysing Limitations and Challenges
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Modi, Rajat Rana, Aayush Jung Kumar, Akash Tirupattur, Praveen Vyas, Shruti Rawat, Yogesh Singh Shah, Mubarak Univ Cent Florida Ctr Res Comp Vis Orlando FL 32816 USA
Beyond possessing large enough size to feed data hungry machines (eg, transformers), what attributes measure the quality of a dataset? Assuming that the definitions of such attributes do exist, how do we quantify amon... 详细信息
来源: 评论
An Ensemble Approach for Facial Behavior Analysis in-the-wild Video
An Ensemble Approach for Facial Behavior Analysis in-the-wil...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hong-Hai Nguyen Van-Thong Huynh Kim, Soo-Hyung Chonnam Natl Univ Dept Artificial Intelligence Convergence Gwangju South Korea
Human emotions recognization contributes to the development of human-computer interaction. The machines understanding human emotions in the real world will significantly contribute to life in the future. This paper in... 详细信息
来源: 评论
Few-Shot Image Classification Benchmarks are Too Far From Reality: Build Back Better with Semantic Task Sampling
Few-Shot Image Classification Benchmarks are Too Far From Re...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bennequin, Etienne Tami, Myriam Toubhans, Antoine Hudelot, Celine Univ Paris Saclay Cent Supelec Gif Sur Yvette France Sicara Paris France
Every day, a new method is published to tackle Few-Shot Image Classification, showing better and better performances on academic benchmarks. Nevertheless, we observe that these current benchmarks do not accurately rep... 详细信息
来源: 评论
PEA: Improving the Performance of ReLU Networks for Free by Using Progressive Ensemble Activations
PEA: Improving the Performance of ReLU Networks for Free by ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Utasi, Akos Continental AI Dev Ctr Budapest Hungary
In recent years novel activation functions have been proposed to improve the performance of neural networks, and they show superior performance compared to the ReLU counterpart. However, there are environments, where ... 详细信息
来源: 评论
Active Prompt Learning in vision Language Models
Active Prompt Learning in Vision Language Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bang, Jihwan Ahn, Sumyeong Lee, Jae-Gil Korea Adv Inst Sci & Technol Daejeon South Korea Michigan State Univ E Lansing MI USA
Pre-trained vision Language Models (VLMs) have demonstrated notable progress in various zero-shot tasks, such as classification and retrieval. Despite their performance, because improving performance on new tasks requ...
来源: 评论
Masked AutoDecoder is Effective Multi-Task vision Generalist
Masked AutoDecoder is Effective Multi-Task Vision Generalist
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Qiu, Han Huang, Jiaxing Gao, Peng Lu, Lewei Zhang, Xiaoqin Lu, Shijian Nanyang Technol Univ S Lab Singapore Singapore Shanghai Artificial Intelligence Lab Shanghai Peoples R China Sensetime Res Beijing Peoples R China Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou Peoples R China
Inspired by the success of general-purpose models in NLP, recent studies attempt to unify different vision tasks in the same sequence format and employ autoregressive Transformers for sequence prediction. They apply u... 详细信息
来源: 评论
Analysis and Extensions of Adversarial Training for Video Classification
Analysis and Extensions of Adversarial Training for Video Cl...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kinfu, Kaleab A. Vidal, Rene Johns Hopkins Univ Math Inst Data Sci Baltimore MD 21218 USA
Adversarial training (AT) is a simple yet effective defense against adversarial attacks to image classification systems, which is based on augmenting the training set with attacks that maximize the loss. However, the ... 详细信息
来源: 评论