咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是351-360 订阅
排序:
CNLL: A Semi-supervised Approach For Continual Noisy Label Learning
CNLL: A Semi-supervised Approach For Continual Noisy Label L...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Karim, Nazmul Khalid, Umar Esmaeili, Ashkan Rahnavard, Nazanin Univ Cent Florida Dept Elect & Comp Engn Orlando FL 32816 USA
The task of continual learning requires careful design of algorithms that can tackle catastrophic forgetting. However, the noisy label, which is inevitable in a real-world scenario, seems to exacerbate the situation. ... 详细信息
来源: 评论
Visual Goal-Directed Meta-Imitation Learning
Visual Goal-Directed Meta-Imitation Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Rivera, Corban G. Handelman, David A. Ratto, Christopher R. Patrone, David Paulhamus, Bart L. Johns Hopkins Univ Intelligent Syst Ctr Appl Phys Lab Laurel MD 20723 USA
The goal of meta-learning is to generalize to new tasks and goals as quickly as possible. Ideally, we would like approaches that generalize to new goals and tasks on the first attempt. Requiring a policy to perform on... 详细信息
来源: 评论
Color Invariant Skin Segmentation
Color Invariant Skin Segmentation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xu, Han Sarkar, Abhijit Abbott, A. Lynn Virginia Tech Bradley Dept Elect & Comp Engn Blacksburg VA 24061 USA Virginia Tech Virginia Tech Transportat Inst Blacksburg VA 24061 USA
This paper addresses the problem of automatically detecting human skin in images without reliance on color information. A primary motivation of the work has been to achieve results that are consistent across the full ... 详细信息
来源: 评论
CSG0: Continual Urban Scene Generation with Zero Forgetting
CSG0: Continual Urban Scene Generation with Zero Forgetting
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jain, Himalaya Tuan-Hung Vu Perez, Patrick Cord, Matthieu Valeo Ai Paris France Sorbonne Univ Paris France
With the rapid advances in generative adversarial networks (GANs), the visual quality of synthesised scenes keeps improving, including for complex urban scenes with applications to automated driving. We address in thi... 详细信息
来源: 评论
Efficient Image Super-Resolution with Collapsible Linear Blocks
Efficient Image Super-Resolution with Collapsible Linear Blo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Li Li, Dong Tian, Lu Shan, Yi Adv Micro Devices Inc Beijing Peoples R China
In this paper, we propose a simple but effective architecture for fast and accurate single image super-resolution. Unlike other compact image super-resolution methods based on hand-crafted designs, we first apply coar... 详细信息
来源: 评论
Update Compression for Deep Neural Networks on the Edge
Update Compression for Deep Neural Networks on the Edge
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Bo Bakhshi, Ali Batista, Gustavo Ng, Brian Chin, Tat-Jun Univ Adelaide Adelaide SA Australia Univ New South Wales Sydney NSW Australia
An increasing number of artificial intelligence (AI) applications involve the execution of deep neural networks (DNNs) on edge devices. Many practical reasons motivate the need to update the DNN model on the edge devi... 详细信息
来源: 评论
An Empirical study of Data-Free Quantization's Tuning Robustness
An Empirical study of Data-Free Quantization's Tuning Robust...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Hong Wen, Yuxuan Ding, Yifu Yang, Zhen Guo, Yufei Qin, Haotong Beihang Univ Beijing Peoples R China Shanghai Aerosp Elect Technol Inst Shanghai Peoples R China China Aerosp Sci & Ind Corp Acad 2 Beijing Peoples R China
Deep convolutional neural networks are now performing increasingly superior in various fields, while the network parameters are getting massive as the advanced neural networks tend to be deeper. Among various model co... 详细信息
来源: 评论
Incremental Meta-Learning via Episodic Replay Distillation for Few-Shot Image recognition
Incremental Meta-Learning via Episodic Replay Distillation f...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Kai Liu, Xialei Bagdanov, Andy Herranz, Luis Jui, Shangling van de Weijer, Joost Comp Vis Ctr Barcelona Spain Nankai Univ Tianjin Peoples R China Univ Florence MICC Florence Italy Huawei Kirin Solut Shanghai Peoples R China
In this paper we consider the problem of incremental meta-learning in which classes are presented incrementally in discrete tasks. We propose Episodic Replay Distillation (ERD), that mixes classes from the current tas... 详细信息
来源: 评论
Multi-Dimensional vision Transformer Compression via Dependency Guided Gaussian Process Search
Multi-Dimensional Vision Transformer Compression via Depende...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hou, Zejiang Kung, Sun-Yuan Princeton Univ Princeton NJ 08544 USA
vision transformers (ViT) have recently attracted considerable attentions, but the huge computational cost remains an issue for practical deployment. Previous ViT pruning methods tend to prune the model along one dime... 详细信息
来源: 评论
SaR: Self-adaptive Refinement on Pseudo Labels for Multiclass-Imbalanced Semi-supervised Learning
SaR: Self-adaptive Refinement on Pseudo Labels for Multiclas...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lai, Zhengfeng Wang, Chao Cheung, Sen-ching Chuah, Chen-Nee Univ Calif Davis Davis CA 95616 USA Southern Univ Sci & Technol Shenzhen Peoples R China Univ Kentucky Lexington KY 40506 USA
Class-imbalanced datasets can severely deteriorate the performance of semi-supervised learning (SSL). This is due to the confirmation bias especially when the pseudo labels are highly biased towards the majority class... 详细信息
来源: 评论