咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是401-410 订阅
排序:
Doubling down: sparse grounding with an additional, almost-matching caption for detection-oriented multimodal pretraining
Doubling down: sparse grounding with an additional, almost-m...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Nebbia, Giacomo Kovashka, Adriana Univ Pittsburgh Pittsburgh PA 15260 USA
A common paradigm in deep learning applications for computer vision is self-supervised pretraining followed by supervised fine-tuning on a target task. In the self-supervision step, a model is trained in a supervised ... 详细信息
来源: 评论
Pseudo-label Generation for Agricultural Robotics Applications
Pseudo-label Generation for Agricultural Robotics Applicatio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ciarfuglia, Thomas A. Motoi, Ionut Marian Saraceni, Leonardo Nardi, Daniele Sapienza Univ Rome Dept Comp Sci Management & Automat Engn DIAG Rome Italy
In the context of table grape cultivation there is rising interest in robotic solutions for harvesting, pruning, precision spraying and other agronomic tasks. Perception algorithms at the core of these systems require... 详细信息
来源: 评论
Can the Mathematical Correctness of Object Configurations Affect the Accuracy of Their Perception?
Can the Mathematical Correctness of Object Configurations Af...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jiang, Han Li, Zeqian Whitehill, Jacob Worcester Polytech Inst Worcester MA 01609 USA
We investigate a new type of dataset bias based on the mathematical correctness of object configurations in visual scenes, and how this bias can affect the accuracy of computer vision models. Our experiments demonstra... 详细信息
来源: 评论
Adversarial Machine Learning Attacks Against Video Anomaly Detection Systems
Adversarial Machine Learning Attacks Against Video Anomaly D...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mumcu, Furkan Doshi, Keval Yilmaz, Yasin Univ S Florida 4202 E Fowler Ave Tampa FL 33620 USA
Anomaly detection in videos is an important computer vision problem with various applications including automated video surveillance. Although adversarial attacks on image understanding models have been heavily invest... 详细信息
来源: 评论
Searching for Energy-Efficient Hybrid Adder-Convolution Neural Networks
Searching for Energy-Efficient Hybrid Adder-Convolution Neur...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Wenshuo Chen, Xinghao Bai, Jinyu Ning, Xuefei Wang, Yunhe Huawei Noahs Ark Lab Hong Kong Peoples R China Huawei TCS Lab Hong Kong Peoples R China Beihang Univ Sch Integrated Circuit Sci & Engn Beijing Peoples R China Tsinghua Univ Dept Elect Engn Beijing Peoples R China
As convolutional neural networks (CNNs) are more and more widely used in computer vision area, the energy consumption of CNNs has become the focus of researchers. For edge devices, both the battery life and the infere... 详细信息
来源: 评论
Adversarial Robustness through the Lens of Convolutional Filters
Adversarial Robustness through the Lens of Convolutional Fil...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gavrikov, Paul Keuper, Janis Offenburg Univ IMLA Offenburg Germany Fraunhofer ITWM CC HPC Kaiserslautern Germany Fraunhofer Res Ctr ML Kaiserslautern Germany
Deep learning models are intrinsically sensitive to distribution shifts in the input data. In particular, small, barely perceivable perturbations to the input data can force models to make wrong predictions with high ... 详细信息
来源: 评论
Transformaly - Two (Feature Spaces) Are Better Than One
Transformaly - Two (Feature Spaces) Are Better Than One
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Cohen, Matan Jacob Avidan, Shai Tel Aviv Univ Blavatnik Sch Comp Sci Tel Aviv Israel Tel Aviv Univ Sch Elect Engn Tel Aviv Israel
Anomaly detection is a well-established research area that seeks to identify samples outside of a predetermined distribution. An anomaly detection pipeline is comprised of two main stages: (1) feature extraction and (... 详细信息
来源: 评论
Doppelganger Saliency: Towards More Ethical Person Re-Identification
Doppelganger Saliency: Towards More Ethical Person Re-Identi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: RichardWebster, Brandon Hu, Brian Fieldhouse, Keith Hoogs, Anthony Kitware Inc 1712 Route 9Suite 300 Clifton Pk NY 12065 USA
Modern surveillance systems have become increasingly dependent on artificial intelligence to provide actionable information for real-time decision making. A critical question relates to how these systems handle diffic... 详细信息
来源: 评论
CDAD: A Common Daily Action Dataset with Collected Hard Negative Samples
CDAD: A Common Daily Action Dataset with Collected Hard Nega...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xiang, Wangmeng Li, Chao Li, Ke Wang, Biao Hua, Xian-Sheng Zhang, Lei Hong Kong Polytech Univ Hong Kong Peoples R China Alibaba Grp DAMO Acad Hangzhou Peoples R China
The research on action understanding has achieved significant progress with the establishment of various benchmark datasets. However, the results of action understanding are far from satisfactory in practice. One reas... 详细信息
来源: 评论
Retrieval-Augmented Open-Vocabulary Object Detection
Retrieval-Augmented Open-Vocabulary Object Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kim, Jooyeon Cho, Eulrang Kim, Sehyung Kim, Hyunwoo J. Korea Univ Dept Comp Sci & Engn Seoul South Korea Samsung Res Mountain View CA USA
Open-vocabulary object detection (OVD) has been studied with vision-Language Models (VLMs) to detect novel objects beyond the pre-trained categories. Previous approaches improve the generalization ability to expand th... 详细信息
来源: 评论