咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是411-420 订阅
排序:
Coarse-to-Fine Cascaded Networks with Smooth Predicting for Video Facial Expression recognition
Coarse-to-Fine Cascaded Networks with Smooth Predicting for ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xue, Fanglei Tan, Zichang Zhu, Yu Ma, Zhongsong Guo, Guodong Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Technol & Engn Ctr Space Utilizat Key Lab Space Utilizat Beijing Peoples R China Baidu Res Inst Deep Learning Beijing Peoples R China Natl Engn Lab Deep Learning Technol & Applicat Beijing Peoples R China
Facial expression recognition plays an important role in human-computer interaction. In this paper, we propose the Coarse-to-Fine Cascaded network with Smooth Predicting (CFC-SP) to improve the performance of facial e... 详细信息
来源: 评论
Multi-modal Aerial View Object Classification Challenge Results - PBVS 2022
Multi-modal Aerial View Object Classification Challenge Resu...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Low, Spencer Nina, Oliver Sappa, Angel D. Blasch, Erik Brigham Young Univ Provo UT 84602 USA Air Force Res Lab Dayton OH USA ESPOL Polytech Univ Ecuador Comp Vision Ctr Guayaquil Ecuador Air Force Off Sci Res Arlington VA USA
This paper details the results and main findings of the second iteration of the Multi-modal Aerial View Object Classification (MAVOC) challenge. The primary goal of both MAVOC challenges is to inspire research into me... 详细信息
来源: 评论
What Should Be Equivariant In Self-Supervised Learning
What Should Be Equivariant In Self-Supervised Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xie, Yuyang Wen, Jianhong Lau, Kin Wai Rehman, Yasar Abbas Ur Shen, Jiajun TCL AI Lab Hong Kong Peoples R China Fuzhou Univ Fuzhou Peoples R China City Univ Hong Kong Hong Kong Peoples R China
Self-supervised learning (SSL) aims to learn feature representation without human-annotated data. Existing methods approach this goal by encouraging the feature representations to be invariant under a set of task-irre... 详细信息
来源: 评论
DeSI: Deepfake Source Identifier for Social Media
DeSI: Deepfake Source Identifier for Social Media
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Narayan, Kartik Agarwal, Harsh Mittal, Surbhi Thakral, Kartik Kundu, Suman Vatsa, Mayank Singh, Richa IIT Jodhpur Karwar Rajasthan India
Social media holds the power to influence a significant change in the population. Through social media, people all around the world can connect and share their views. However, this social space is now infected due to ... 详细信息
来源: 评论
ConvMLP: Hierarchical Convolutional MLPs for vision
ConvMLP: Hierarchical Convolutional MLPs for Vision
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Li, Jiachen Hassani, Ali Walton, Steven Shi, Humphrey SHI Lab University of Oregon UIUC United States
MLP-based architectures, which consist of a sequence of consecutive multi-layer perceptron blocks, have recently been found to reach comparable results to convolutional and transformer-based methods on image classific... 详细信息
来源: 评论
Posture-based Infant Action recognition in the Wild with Very Limited Data
Posture-based Infant Action Recognition in the Wild with Ver...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Huang, Xiaofei Luan, Lingfei Hatamimajoumerd, Elaheh Wan, Michael Kakhaki, Pooria Daneshvar Obeid, Rita Ostadabbas, Sarah Northeastern University MA United States Case Western Reserve University OH United States
Automatic detection of infant actions from home videos could aid medical and behavioral specialists in the early detection of motor impairments in infancy. However, most computer vision approaches for action recogniti... 详细信息
来源: 评论
Blind Non-Uniform Motion Deblurring using Atrous Spatial Pyramid Deformable Convolution and Deblurring-Reblurring Consistency
Blind Non-Uniform Motion Deblurring using Atrous Spatial Pyr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Huo, Dong Masoumzadeh, Abbas Yang, Yee-Hong Univ Alberta Dept Comp Sci Edmonton AB Canada
Many deep learning based methods are designed to remove non-uniform (spatially variant) motion blur caused by object motion and camera shake without knowing the blur kernel. Some methods directly output the latent sha... 详细信息
来源: 评论
Human vision Based 3D Point Cloud Semantic Segmentation of Large-Scale Outdoor Scenes
Human Vision Based 3D Point Cloud Semantic Segmentation of L...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Yoo, Sunghwan Jeong, Yeonjeong Jameela, Maryam Sohn, Gunho York University Department of Earth and Space Science and Engineering TorontoONM3J 1P3 Canada
This paper proposes EyeNet, a novel semantic segmentation network for point clouds that addresses the critical yet often overlooked parameter of coverage area size. Inspired by human peripheral vision, EyeNet overcome... 详细信息
来源: 评论
Do You Remember? Dense Video Captioning with Cross-Modal Memory Retrieval
Do You Remember? Dense Video Captioning with Cross-Modal Mem...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kim, Minkuk Kim, Hyeon Bae Moon, Jinyoung Choi, Jinwoo Kim, Seong Tae Kyung Hee Univ Seoul South Korea Elect & Telecommun Res Inst ETRI Daejeon South Korea
There has been significant attention to the research on dense video captioning, which aims to automatically localize and caption all events within untrimmed video. Several studies introduce methods by designing dense ... 详细信息
来源: 评论
SPARTAN: Self-supervised Spatiotemporal Transformers Approach to Group Activity recognition
SPARTAN: Self-supervised Spatiotemporal Transformers Approac...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Chappa, Naga V. S. Raviteja Nguyen, Pha Nelson, Alexander H. Seo, Han-Seok Li, Xin Dobbs, Page Daniel Luu, Khoa University of Arkansas United States West Virginia University United States
In this paper, we propose a new, simple, and effective Self-supervised Spatio-temporal Transformers (SPARTAN) approach to Group Activity recognition (GAR) using unlabeled video data. Given a video, we create local and... 详细信息
来源: 评论