咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是511-520 订阅
排序:
Transformer for Single Image Super-Resolution
Transformer for Single Image Super-Resolution
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lu, Zhisheng Li, Juncheng Liu, Hong Huang, Chaoyan Zhang, Linlin Zeng, Tieyong Peking Univ Shenzhen Grad Sch Shenzhen Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Nanjing Univ Posts & Telecommun Nanjing Peoples R China
Single image super-resolution (SISR) has witnessed great strides with the development of deep learning. However, most existing studies focus on building more complex networks with a massive number of layers. Recently,... 详细信息
来源: 评论
IMDeception: Grouped Information Distilling Super-Resolution Network
IMDeception: Grouped Information Distilling Super-Resolution...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ayazoglu, Mustafa Aselsan Res Ankara Turkey
Single-Image-Super-Resolution (SISR) is a classical computer vision problem that has benefited from the recent advancements in deep learning methods, especially the advancements of convolutional neural networks (CNN).... 详细信息
来源: 评论
Learning CLIP Guided Visual-Text Fusion Transformer for Video-based Pedestrian Attribute recognition
Learning CLIP Guided Visual-Text Fusion Transformer for Vide...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Zhu, Jun Jin, Jiandong Yang, Zihan Wu, Xiaohao Wang, Xiao Anhui University School of Computer Science and Technology Hefei230601 China Anhui University School of Artificial Intelligence Hefei230601 China
Existing pedestrian attribute recognition (PAR) algorithms are mainly developed based on a static image. However, the performance is not reliable for images with challenging factors, such as heavy occlusion, motion bl... 详细信息
来源: 评论
Fast building segmentation from satellite imagery and few local labels
Fast building segmentation from satellite imagery and few lo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Robinson, Caleb Ortiz, Anthony Park, Hogeun Gracia, Nancy Lozano Kaw, Jon Kher Sederholm, Tina Dodhia, Rahul Ferres, Juan M. Lavista Microsoft AI Good Res Lab Redmond WA 98052 USA World Bank 1818 H St NW Washington DC 20433 USA
Innovations in computer vision algorithms for satellite image analysis can enable us to explore global challenges such as urbanization and land use change at the planetary level. However, domain shift problems are a c... 详细信息
来源: 评论
NTIRE 2024 Image Shadow Removal Challenge Report
NTIRE 2024 Image Shadow Removal Challenge Report
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Wu, Zongwei Zhou, Zhuyun Chen, Cailian Zhou, Han Timofte, Radu Dong, Wei Tian, Yuqiong Chen, Jun Lul, Xin Zhu, Yurui Wang, Xi Li, Dong Xiao, Jie Zhang, Yunpeng Fu, Xueyang Zha, Zheng-Jun Zhang, Zhao Zhao, Suiyi Wang, Bo Luo, Yan Wei, Yanyan Xiaol, Jie Ful, Xueyang Zhal, Zheng-Jun Lu, Xin Zhao, Zhihao Sun, Long Yang, Tingting Pan, Jinshan Tang, Jinhui Dong, Jiangxin Benjdira, Bilel Nassif, Mohammed Koubaa, Anis Elhayek, Ahmed Ali, Anas M. Tokoro, Kyotaro Kawai, Kento Yokoyama, Kaname Seno, Takuya Kondo, Yuki Ukita, Norimichi Li, Chenghua Yang, Bo Wu, Zhiqi Chen, Gao Yu, Yihan Chen, Sixiang Mane, Kai Ye, Tian Zou, Wenbin Lin, Yunlong Xing, Zhaohu Bai, Jinbin Chai, Wenhao Zhu, Lei Maheshwari, Ritik Verma, Rakshank Tekchandanil, Rahul Hambarde, Praful Tazil, Satya Narayan Vipparthi, Santosh Kumar Murala, Subrahmanyam Lee, Jaeho Kim, Seongwan Sharif, S. M. A. Khujaev, Nodirkhuja Tsoy, Roman Gao, Fan Yan, Weidan Shao, Wenze Zhang, Dengyin Chen, Bin Zhang, Siqi Qian, Yanxin Chen, Yuanbin Zhou, Yuanbo Tong, Tong Wei, Rongfeng Sun, Ruiqi Liu, Yue Akalwadi, Nikhil Joshi, Amogh Malagi, Sampada Desai, Chaitra Tabib, Ramesh Ashok Mudenagudi, Uma Murtaza, Ali Khairuddin, Uswah Faudzi, Ahmad'Athif Mohd Dukre, Adinath Deshmukh, Vivek Phutke, Shruti S. Kulkarni, Ashutosh Gonde, Anil Karthik, Arun K. Manasa, N. Priyal, Shri Hari Hao, Wei Yan, Xingzhuo Fu, Minghan Univ Wurzburg Comp Vis Lab IFI & CAIDAS Wurzburg Germany Shanghai Jiao Tong Univ Shanghai Peoples R China McMaster Univ Dept Elect & Comp Engn Hamilton ON Canada Univ Sci & Technol China Hefei Peoples R China Hefei Univ Technol Hefei Peoples R China Nanjing Univ Sci & Technol Nanjing Jiangsu Peoples R China Prince Sultan Univ Robot & Internet Things Lab Riyadh 12435 Saudi Arabia Prince Muqrin Univ Artificial Intelligence Dept Medinah 41311 Saudi Arabia Toyota Technol Inst Intelligent Informat Media Lab Nagoya Japan Nanjing Artificial Intelligence Res IA AiRiA Nanjing Peoples R China Nanjing Normal Univ High Sch Jiangning Campus Nanjing Peoples R China Hong Kong Univ Sci & Technol Guangzhou Guangzhou Peoples R China South China Univ Technol Guangzhou Peoples R China Xiamen Univ Xiamen Peoples R China Natl Univ Singapore Singapore Singapore Univ Washington Seattle WA 98195 USA GEC Ajmer Kiranipura India CVPR Lab IIT Ropar Rupnagar India SCSS Trinity Coll Dublin Dublin Ireland Opt AI Seoul South Korea Nanjing Univ Posts & Telecommun Nanjing Peoples R China Fuzhou Univ Fuzhou Peoples R China Univ Hong Kong Logist & Supply Chain MultiTech R&D Ctr Hong Kong Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China KLE Technol Univ Ctr Excellence Visual Intelligence CEVI Hubballi Karnataka India KLE Technol Univ Sch Elect & Commun Engn Hubballi Karnataka India KLE Technol Univ Sch Comp Sci & Engn Hubballi Karnataka India Univ Teknol Malaysia Malaysia Japan Int Inst Technol MMT Kuala Lumpur Malaysia Univ Teknol Malaysia Ctr Artificial Intelligence & Robot CAIRO Kuala Lumpur Malaysia Shri Guru Gobind Singhji Inst Engn & Technol Nanded India Indian Inst Technol Ropar Comp Vis & Pattern Recognit Lab Rupnagar India Trinity Coll Dublin Sch Comp Sci & Stat CVPR Lab Dublin Ireland Shiv Nadar Univ Sch Engn Chennai Tamil Nadu India Fortinet Inc Sunnyvale CA USA Bosch Investment Ltd Shanghai Peoples R China Univ Saskatchewan Saskatoon
This work reviews the results of the NTIRE 2024 Challenge on Shadow Removal. Building on the last year edition, the current challenge was organized in two tracks, with a track focused on increased fidelity reconstruct... 详细信息
来源: 评论
Beyond AUROC & co. for evaluating out-of-distribution detection performance
Beyond AUROC & co. for evaluating out-of-distribution detect...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Humblot-Renaux, Galadrielle Escalera, Sergio Moeslund, Thomas B. Aalborg University Visual Analysis and Perception Lab Denmark Universitat Autònoma de Barcelona Computer Vision Center Spain Universitat de Barcelona Dept. of Mathematics and Informatics Spain
While there has been a growing research interest in developing out-of-distribution (OOD) detection methods, there has been comparably little discussion around how these methods should be evaluated. Given their relevan...
来源: 评论
Blind Image Inpainting via Omni-dimensional Gated Attention and Wavelet Queries
Blind Image Inpainting via Omni-dimensional Gated Attention ...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Phutke, Shruti S. Kulkarni, Ashutosh Vipparthi, Santosh Kumar Murala, Subrahmanyam Indian Institute of Technology Ropar Computer Vision and Pattern Recognition Lab Punjab Rupnagar India
Blind image inpainting is a crucial restoration task that does not demand additional mask information to restore the corrupted regions. Yet, it is a very less explored research area due to the difficulty in discrimina... 详细信息
来源: 评论
Unpaired Face Restoration via Learnable Cross-Quality Shift
Unpaired Face Restoration via Learnable Cross-Quality Shift
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dong, Yangyi Zhang, Xiaoyun Wang, Zhixin Zhang, Ya Chen, Siheng Wang, Yanfeng Shanghai Jiao Tong Univ Cooperat Medianet Innovat Ctr Shanghai Peoples R China Shanghai AI Lab Shanghai Peoples R China
Face restoration aims to recover high-quality (HQ) face images from low-quality (LQ) ones with various unknown degradations. Unpaired face restoration approaches focus on the adaptation to unseen degradations, which i... 详细信息
来源: 评论
Does Interference Exist When Training a Once-For-All Network?
Does Interference Exist When Training a Once-For-All Network...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Shipard, Jordan Wiliem, Arnold Fookes, Clinton Queensland Univ Technol Signal Proc Artificial Intelligence & Vis Technol Brisbane Qld Australia Sentient Vis Syst Port Melbourne Vic Australia
The Once-For-All (OFA) method offers an excellent pathway to deploy a trained neural network model into multiple target platforms by utilising the supernet-subnet architecture. Once trained, a subnet can be derived fr... 详细信息
来源: 评论
Inferring Affective Experience from the Big Picture Metaphor: A Two-dimensional Visual Breadth Model
Inferring Affective Experience from the Big Picture Metaphor...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Tong, Song Duan, Jingyi Liang, Xuefeng Kumada, Takatsune Peng, Kaiping Nakashima, Ryoichi Tsinghua University Department of Psychology Beijing China Xidian University School of Artificial Intelligence Shaanxi China Kyoto University Graduate School of Informatics Kyoto Japan
This study explores the psychological significance of the commonly used visual metaphor 'seeing the big picture' and examines whether and how it leads to positive experiences in real-life situations. To elucid... 详细信息
来源: 评论