咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是541-550 订阅
排序:
Masked vision Transformers for Hyperspectral Image Classification
Masked Vision Transformers for Hyperspectral Image Classific...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Scheibenreif, Linus Mommert, Michael Borth, Damian University of St. Gallen Aiml Lab School of Computer Science Switzerland
Transformer architectures have become state-of-the-art models in computer vision and natural language processing. To a significant degree, their success can be attributed to self-supervised pre-training on large scale... 详细信息
来源: 评论
Towards Automated Polyp Segmentation Using Weakly- and Semi-Supervised Learning and Deformable Transformers
Towards Automated Polyp Segmentation Using Weakly- and Semi-...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Ren, Guangyu Lazarou, Michalis Yuan, Jing Stathaki, Tania Imperial College London United Kingdom
Polyp segmentation is a crucial step towards computer-aided diagnosis of colorectal cancer. However, most of the polyp segmentation methods require pixel-wise annotated datasets. Annotated datasets are tedious and tim... 详细信息
来源: 评论
RB-Dust - A Reference-based Dataset for vision-based Dust Removal
RB-Dust - A Reference-based Dataset for Vision-based Dust Re...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Buckel, Peter Oksanen, Timo Dietmueller, Thomas Ravensburg Germany Technical University of Munich Germany Germany
Dust in the agricultural landscape is a significant challenge and influences, for example, the environmental perception of autonomous agricultural machines. Image enhancement algorithms can be used to reduce dust. How... 详细信息
来源: 评论
Underwater Light Field Retention : Neural Rendering for Underwater Imaging
Underwater Light Field Retention : Neural Rendering for Unde...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ye, Tian Chen, Sixiang Liu, Yun Ye, Yi Chen, Erkang Li, Yuche Jimei Univ Sch Ocean Informat Engn Xiamen Peoples R China Southwest Univ Coll Artificial Intelligence Chongqing Peoples R China China Univ Petr Coll Geosci Beijing Peoples R China
Underwater Image Rendering aims to generate a true-to-life underwater image from a given clean one, which could be applied to various practical applications such as underwater image enhancement, camera filter, and vir... 详细信息
来源: 评论
ECO: Ensembling Context Optimization for vision-Language Models
ECO: Ensembling Context Optimization for Vision-Language Mod...
收藏 引用
ieee/cvf International conference on computer vision (ICCV)
作者: Agnolucci, Lorenzo Baldrati, Alberto Todino, Francesco Becattini, Federico Bertini, Marco Del Bimbo, Alberto Univ Florence Florence Italy Univ Siena Siena Italy Univ Pisa Pisa Italy
Image recognition has recently witnessed a paradigm shift, where vision-language models are now used to perform few-shot classification based on textual prompts. Among these, the CLIP model has shown remarkable capabi... 详细信息
来源: 评论
Light Field Synthesis from a Monocular Image using Variable LDI
Light Field Synthesis from a Monocular Image using Variable ...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Bak, Junhyeong Kyu Park, In Inha University Department of Electrical and Computer Engineering Incheon22212 Korea Republic of
Recent advancements in learning-based novel view synthesis enable users to synthesize light field from a monocular image without special equipment. Moreover, the state-of-the-art techniques including multiplane image ... 详细信息
来源: 评论
Cali-NCE: Boosting Cross-modal Video Representation Learning with Calibrated Alignment
Cali-NCE: Boosting Cross-modal Video Representation Learning...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Zhao, Nanxuan Jiao, Jianbo Xie, Weidi Lin, Dahua University of Bath Department of Computer Science United Kingdom University of Birmingham School of Computer Science United Kingdom Shanghai Jiaotong University Cooperative Medianet Innovation Center China Chinese University of Hong Kong Department of Information Engineering Hong Kong
With the large-scale video-text datasets being collected, learning general visual-textual representation has gained increasing attention. While recent methods are designed with the assumption that the alt-text descrip... 详细信息
来源: 评论
H-Net: Unsupervised Attention-based Stereo Depth Estimation Leveraging Epipolar Geometry
H-Net: Unsupervised Attention-based Stereo Depth Estimation ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Huang, Baoru Zheng, Jian-Qing Giannarou, Stamatia Elson, Daniel S. Imperial Coll London Hamlyn Ctr Robot Surg London England Univ Oxford Kennedy Inst Rheumatol Oxford England Univ Oxford Big Data Inst Oxford England
Depth estimation from a stereo image pair has become one of the most explored applications in computer vision, with most previous methods relying on fully supervised learning settings. However, due to the difficulty i... 详细信息
来源: 评论
LSDIR: A Large Scale Dataset for Image Restoration
LSDIR: A Large Scale Dataset for Image Restoration
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Li, Yawei Zhang, Kai Liang, Jingyun Cao, Jiezhang Liu, Ce Gong, Rui Zhang, Yulun Tang, Hao Liu, Yun Demandolx, Denis Ranjan, Rakesh Timofte, Radu Van Gool, Luc Computer Vision Lab Eth Zürich Switzerland Meta Reality Labs United States University of Würzburg Germany Ku Leuven Belgium
The aim of this paper is to propose a large scale dataset for image restoration (LSDIR). Recent work in image restoration has been focused on the design of deep neural networks. The datasets used to train these networ... 详细信息
来源: 评论
The 6th AI City Challenge
The 6th AI City Challenge
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Naphade, Milind Wang, Shuo Anastasiu, David C. Tang, Zheng Chang, Ming-Ching Yao, Yue Zheng, Liang Rahman, Mohammed Shaiqur Venkatachalapathy, Archana Sharma, Anuj Feng, Qi Ablavsky, Vitaly Sclaroff, Stan Chakraborty, Pranamesh Li, Alice Li, Shangru Chellappa, Rama NVIDIA Corp Santa Clara CA 95051 USA Santa Clara Univ Santa Clara CA 95053 USA SUNY Albany Albany NY 12222 USA Australian Natl Univ Canberra ACT Australia Indian Inst Technol Kanpur Kanpur Uttar Pradesh India Iowa State Univ Ames IA USA Boston Univ Boston MA 02215 USA Univ Washington Seattle WA 98195 USA Johns Hopkins Univ Baltimore MD 21218 USA
The 6th edition of the AI City Challenge specifically focuses on problems in two domains where there is tremendous unlocked potential at the intersection of computer vision and artificial intelligence: Intelligent Tra... 详细信息
来源: 评论