咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是661-670 订阅
排序:
Adversarial Normalization: I Can visualize Everything (ICE)
Adversarial Normalization: I Can visualize Everything (ICE)
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Choi, Hoyoung Jin, Seungwan Han, Kyungsik Hanyang Univ Seoul South Korea
vision transformers use [CLS] tokens to predict image classes. Their explainability visualization has been studied using relevant information from [CLS] tokens or focusing on attention scores during self-attention. Su... 详细信息
来源: 评论
Fusing Pre-trained Language Models with Multimodal Prompts through Reinforcement Learning
Fusing Pre-trained Language Models with Multimodal Prompts t...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yu, Youngjae Chung, Jiwan Yun, Heeseung Hessel, Jack Park, Jae Sung Lu, Ximing Zellers, Rowan Ammanabrolu, Prithviraj Le Bras, Ronan Kim, Gunhee Choi, Yejin Allen Inst Artificial Intelligence Seattle WA USA OpenAI Seattle WA USA Yonsei Univ Dept Artificial Intelligence Seoul South Korea Seoul Natl Univ Dept Comp Sci & Engn Seoul South Korea Univ Washington Paul G Allen Sch Comp Sci Seattle WA 98195 USA
Language models are capable of commonsense reasoning: while domain-specific models can learn from explicit knowledge (e.g. commonsense graphs [6], ethical norms [25]), and larger models like GPT-3 [7] manifest broad c... 详细信息
来源: 评论
Training Debiased Subnetworks with Contrastive Weight Pruning
Training Debiased Subnetworks with Contrastive Weight Prunin...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Park, Geon Yeong Lee, Sangmin Lee, Sang Wan Ye, Jong Chul Korea Adv Inst Sci & Technol KAIST Bio & Brain Engn Daejeon South Korea Korea Adv Inst Sci & Technol KAIST Math Sci Daejeon South Korea Korea Adv Inst Sci & Technol KAIST Kim Jaechul Grad Sch AI Daejeon South Korea
Neural networks are often biased to spuriously correlated features that provide misleading statistical evidence that does not generalize. This raises an interesting question: "Does an optimal unbiased functional ... 详细信息
来源: 评论
Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report Generation
Dynamic Graph Enhanced Contrastive Learning for Chest X-ray ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Mingjie Lin, Bingqian Chen, Zicong Lin, Haokun Liang, Xiaodan Chang, Xiaojun Univ Technol Sydney ReLER AAII Sydney Australia Sun Yat Sen Univ Sch ISE Guangzhou Peoples R China Mohamed bin Zayed Univ Artificial Intelligence Dept Comp Vis Abu Dhabi U Arab Emirates Peng Cheng Natl Lab Shenzhen Peoples R China Univ Hong Kong Hong Kong Peoples R China
Automatic radiology reporting has great clinical potential to relieve radiologists from heavy workloads and improve diagnosis interpretation. Recently, researchers have enhanced data-driven neural networks with medica... 详细信息
来源: 评论
Leverage Interactive Affinity for Affordance Learning
Leverage Interactive Affinity for Affordance Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Luo, Hongchen Zhai, Wei Zhang, Jing Cao, Yang Tao, Dacheng Univ Sci & Technol China Hefei Peoples R China Univ Sydney Camperdown Australia JD Explore Acad Beijing Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei Peoples R China
Perceiving potential "action possibilities" (i.e., affordance) regions of images and learning interactive functionalities of objects from human demonstration is a challenging task due to the diversity of hum... 详细信息
来源: 评论
Certified Adversarial Robustness Within Multiple Perturbation Bounds
Certified Adversarial Robustness Within Multiple Perturbatio...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Nandi, Soumalya Addepalli, Sravanti Rangwani, Harsh Babu, R. Venkatesh Indian Institute of Science Vision and AI Lab Bengaluru India
Randomized smoothing (RS) is a well known certified defense against adversarial attacks, which creates a smoothed classifier by predicting the most likely class under random noise perturbations of inputs during infere...
来源: 评论
S3C: Semi-Supervised VQA Natural Language Explanation via Self-Critical Learning
S<SUP>3</SUP>C: Semi-Supervised VQA Natural Language Explana...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Suo, Wei Sun, Mengyang Liu, Weisong Gao, Yiqi Wang, Peng Zhang, Yanning Wu, Qi Northwestern Polytech Univ Sch Comp Sci Xian Peoples R China Northwestern Polytech Univ Ningbo Inst Xian Peoples R China Northwestern Polytech Univ Sch Cybersecur Xian Peoples R China Univ Adelaide Adelaide SA Australia
VQA Natural Language Explanation (VQA-NLE) task aims to explain the decision-making process of VQA models in natural language. Unlike traditional attention or gradient analysis, free-text rationales can be easier to u... 详细信息
来源: 评论
VQACL: A Novel Visual Question Answering Continual Learning Setting
VQACL: A Novel Visual Question Answering Continual Learning ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Xi Zhang, Feifei Xu, Changsheng Chinese Acad Sci Inst Automat State Key Lab Multimodal Artificial Intelligence Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China Tianjin Univ Technol Sch Comp Sci & Engn Tianjin Peoples R China
Research on continual learning has recently led to a variety of work in unimodal community, however little attention has been paid to multimodal tasks like visual question answering (VQA). In this paper, we establish ... 详细信息
来源: 评论
Breaking Through the Haze: An Advanced Non-Homogeneous Dehazing Method based on Fast Fourier Convolution and ConvNeXt
Breaking Through the Haze: An Advanced Non-Homogeneous Dehaz...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Zhou, Han Dong, Wei Liu, Yangyi Chen, Jun Mcmaster University Department of Electrical and Computer Engineering Hamilton Canada University of Alberta Department of Electrical and Computer Engineering Edmonton Canada
Haze usually leads to deteriorated images with low contrast, color shift and structural distortion. We observe that many deep learning based models exhibit exceptional performance on removing homogeneous haze, but the... 详细信息
来源: 评论
Generating Aligned Pseudo-Supervision from Non-Aligned Data for Image Restoration in Under-Display Camera
Generating Aligned Pseudo-Supervision from Non-Aligned Data ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Feng, Ruicheng Li, Chongyi Chen, Huaijin Li, Shuai Gu, Jinwei Loy, Chen Change Nanyang Technol Univ S Lab Singapore Singapore SenseBrain Technol San Jose CA USA Chinese Univ Hong Kong Hong Kong Peoples R China Shanghai AI Lab Shanghai Peoples R China
Due to the difficulty in collecting large-scale and perfectly aligned paired training data for Under-Display Camera (UDC) image restoration, previous methods resort to monitor-based image systems or simulation-based m... 详细信息
来源: 评论