咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是681-690 订阅
排序:
Multi-camera People Tracking With Mixture of Realistic and Synthetic Knowledge
Multi-camera People Tracking With Mixture of Realistic and S...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Nguyen, Quang Qui-Vinh Le, Huy Dinh-Anh Chau, Truc Thi-Thanh Luu, Duc Trung Chung, Nhat Minh Ha, Synh Viet-Uyen International University School of Computer Science and Engineering Ho Chi Minh City Viet Nam Vietnam National University Ho Chi Minh City Viet Nam
This paper presents a solution for Track 1 of the AI City Challenge 2023, which involves Multi-Camera People Tracking in indoor scenarios. The proposed framework comprises four modules: Vehicle detection, ReID feature... 详细信息
来源: 评论
3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive Physics under Challenging Scenes
3D-IntPhys: Towards More Generalized 3D-grounded Visual Intu...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Xue, Haotian Torralba, Antonio Tenenbaum, Joshua Yamins, Daniel Li, Yunzhu Tung, Hsiao-Yu Georgia Tech United States Mit United States Stanford Univeristy United States
Given a visual scene, humans have strong intuitions about how a scene can evolve over time under given actions. The intuition, often termed visual intuitive physics, is a critical ability that allows us to make effect... 详细信息
来源: 评论
NTIRE 2023 Video Colorization Challenge
NTIRE 2023 Video Colorization Challenge
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Kang, Xiaoyang Lin, Xianhui Zhang, Kai Hui, Zheng Xiang, Wangmeng He, Jun-Yan Li, Xiaoming Ren, Peiran Xie, Xuansong Timofte, Radu Pan, Jinshan Peng, Zhongzheng Zhang, Qiyan Dong, Jiangxin Tang, Jinhui Li, Jinjing Lin, Chichen Li, Qipei Liang, Qirong Gang, Ruipeng Liu, Xiaofeng Feng, Shuang Liu, Shuai Wang, Hao Feng, Chaoyu Bai, Furui Zhang, Yuqian Shao, Guangqi Wang, Xiaotao Lei, Lei Chen, Siqi Zhang, Yu Xu, Hanning Liu, Zheyuan Zhang, Zhao Luo, Yan Zuo, Zhichao Damo Academy Alibaba Group China Computer Vision Lab Eth Zürich Switzerland Nanyang Technological University Singapore University of Würzburg Germany Nanjing University of Science and Technology China Communication University of China Beijing100024 China Academy of Broadcasting Science Nrta Beijing100866 China Uhdtv Research and Application Laboratory Beijing100176 China Xiaomi Inc. China School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Zjut China China
This paper reviews the video colorization challenge on the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2023. The target of this challenge is converting grayscale vid... 详细信息
来源: 评论
Masked Image Training for Generalizable Deep Image Denoising
Masked Image Training for Generalizable Deep Image Denoising
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Haoyu Gu, Jinjin Liu, Yihao Magid, Salma Abdel Dong, Chao Wang, Qiong Pfister, Hanspeter Zhu, Lei Hong Kong Univ Sci & Technol Guangzhou Hong Kong Peoples R China Shanghai AI Lab Shanghai Peoples R China Univ Sydney Sydney Australia Chinese Acad Sci Shenzhen Inst Adv Technol ShenZhen Key Lab Comp Vis & Pattern Recognit Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Guangdong Prov Key Lab Comp Vision & Virtual Rea Beijing Peoples R China Harvard Univ Cambridge MA USA Hong Kong Univ Sci & Technol Hong Kong Peoples R China
When capturing and storing images, devices inevitably introduce noise. Reducing this noise is a critical task called image denoising. Deep learning has become the de facto method for image denoising, especially with t... 详细信息
来源: 评论
CiCo: Domain-Aware Sign Language Retrieval via Cross-Lingual Contrastive Learning
CiCo: Domain-Aware Sign Language Retrieval via Cross-Lingual...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Cheng, Yiting Wei, Fangyun Bao, Jianmin Chen, Dong Zhang, Wenqiang Fudan Univ Sch Comp Sci Shanghai Peoples R China Microsoft Res Asia Beijing Peoples R China
This work focuses on sign language retrieval-a recently proposed task for sign language understanding. Sign language retrieval consists of two sub-tasks: text-to-sign-video (T2V) retrieval and sign-video-to-text (V2T)... 详细信息
来源: 评论
NTIRE 2022 Challenge on Night Photography Rendering
NTIRE 2022 Challenge on Night Photography Rendering
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ershov, Egor Savchik, Alex Shepelev, Denis Banic, Nikola Brown, Michael S. Timofte, Radu Koscevic, Karlo Freeman, Michael Tesalin, Vasily Bocharov, Dmitry Semenkov, Illya Subasic, Marko Loncaric, Sven Terekhin, Arseniy Liu, Shuai Feng, Chaoyu Wang, Hao Zhu, Ran Li, Yongqiang Lei, Lei Li, Zhihao Yi, Si Han, Ling-Hao Wu, Ruiqi Jin, Xin Guo, Chunle Kinli, Furkan Mentes, Sami Ozcan, Baris Kirac, Furkan Zini, Simone Rota, Claudio Buzzelli, Marco Bianco, Simone Schettini, Raimondo Li, Wei Ma, Yipeng Wang, Tao Xu, Ruikang Song, Fenglong Chen, Wei-Ting Yang, Hao-Hsiang Huang, Zhi-Kai Chang, Hua-En Kuo, Sy-Yen Liang, Zhexin Zhou, Shangchen Feng, Ruicheng Li, Chongyi Chen, Xiangyu Song, Binbin Zhang, Shile Liu, Lin Wang, Zhendong Ryu, Dohoon Bae, Hyokyoung Kwon, Taesung Desai, Chaitra Akalwadi, Nikhil Joshi, Amogh Mandi, Chinmayee Malagi, Sampada Uppin, Akash Reddy, Sai Sudheer Tabib, Ramesh Ashok Patil, Ujwala Mudenagudi, Uma Kharkevich Inst Inst Informat Transmiss Problems Moscow Russia Gideon Bros Osijek Croatia York Univ Toronto ON Canada Swiss Fed Inst Technol Zurich Zurich Switzerland Univ Wurzburg Wurzburg Germany Univ Zagreb Fac Elect Engn & Comp Zagreb Croatia Michael Freeman Photog London England Xiaomi Inc Beijing Peoples R China Nanjing Univ Nanjing Peoples R China Nankai Univ Tianjin Peoples R China Wuhan Univ Technol Wuhan Peoples R China Ozyegin Univ Istanbul Turkey Univ Milano Bicocca Milan Italy Huawei Noahs Ark Lab Montreal PQ Canada Natl Taiwan Univ Grad Inst Elect Engn New Taipei Taiwan Natl Taiwan Univ Dept Elect Engn New Taipei Taiwan Nanyang Technol Univ Singapore Singapore Univ Macau Taipa Macao Peoples R China Univ Sci & Technol China Hefei Peoples R China Korea Adv Inst Sci & Technol Daejeon South Korea KLE Technol Univ Ctr Excellence Visual Intelligence CEVI Hubballi Karnataka India
This paper reviews the NTIRE 2022 challenge on night photography rendering. The challenge solicited solutions that processed RAW camera images captured in night scenes to produce a photo-finished output image encoded ... 详细信息
来源: 评论
PanoDR: Spherical Panorama Diminished Reality for Indoor Scenes
PanoDR: Spherical Panorama Diminished Reality for Indoor Sce...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gkitsas, Vasileios Sterzentsenko, Vladimiros Zioulis, Nikolaos Albanis, Georgios Zarpalas, Dimitrios Ctr Res & Technol Hellas Thessaloniki Greece
The rising availability of commercial 360 degrees cameras that democratize indoor scanning, has increased the interest for novel applications, such as interior space re-design. Diminished Reality (DR) fulfills the req... 详细信息
来源: 评论
A Deep Adversarial Framework for Visually Explainable Periocular recognition
A Deep Adversarial Framework for Visually Explainable Perioc...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Brito, Joao Proenca, Hugo Univ Beira Interior IT Inst Telecomunicacoes P-6200001 Covilha Portugal
In the biometrics context, the ability to provide the reasoning behind a decision has been at the core of major research efforts. Explanations serve not only to increase the trust amongst the users of a system, but al... 详细信息
来源: 评论
On Disentanglement and Mutual Information in Semi-Supervised Variational Auto-Encoders
On Disentanglement and Mutual Information in Semi-Supervised...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gordon Rodriguez, Elliott Columbia Univ Dept Stat New York NY 10027 USA
In the context of variational auto-encoders, learning disentangled latent variable representations remains a challenging problem. In this abstract, we consider the semi-supervised setting, in which the factors of vari... 详细信息
来源: 评论
NTIRE 2022 Challenge on Perceptual Image Quality Assessment
NTIRE 2022 Challenge on Perceptual Image Quality Assessment
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gu, Jinjin Cai, Haoming Dong, Chao Ren, Jimmy S. Timofte, Radu Gong, Yuan Lao, Shanshan Shi, Shuwei Wang, Jiahao Yang, Sidi Wu, Tianhe Xia, Weihao Yang, Yujiu Cao, Mingdeng Heng, Cong Fu, Lingzhi Zhang, Rongyu Zhang, Yusheng Wang, Hao Song, Hongjian Wang, Jing Fan, Haotian Hou, Xiaoxia Sun, Ming Li, Mading Zhao, Kai Yuan, Kun Kong, Zishang Wu, Mingda Zheng, Chuanchuan Conde, Marcos, V Burchi, Maxime Feng, Longtao Zhang, Tao Li, Yang Xu, Jingwen Wang, Haiqiang Liao, Yiting Li, Junlin Xu, Kele Sun, Tao Xiong, Yunsheng Keshari, Abhisek Komal, Komal Thakur, Sadbhawana Jakhetiya, Vinit Subudhi, Badri N. Yang, Hao-Hsiang Chang, Hua-En Huang, Zhi-Kai Chen, Wei-Ting Kuo, Sy-Yen Dutta, Saikat Das, Sourya Dipta Shah, Nisarg A. Tiwari, Anil Kumar Shanghai AI Lab Shanghai Peoples R China Univ Sydney Sch Elect & Informat Engn Sydney NSW Australia Chinese Acad Sci Shenzhen Inst Adv Technol Beijing Peoples R China SenseTime Res Beijing Peoples R China Univ Wurzburg Wurzburg Germany Swiss Fed Inst Technol Zurich Switzerland Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Beijing Peoples R China Tsinghua Univ Dept Automat Beijing Peoples R China UCL London England Netease Hangzhou Peoples R China Kuaishou Beijing Peoples R China Univ Wurzburg Comp Vis Lab Wurzburg Germany ByteDance Beijing Peoples R China Key Lab Parallel & Distributed Proc Beijing Peoples R China Indian Inst Technol Jammu Jagti Jammu & Kashmir India Indian Inst Technol Madras Chennai Tamil Nadu India Jadavpur Univ Kolkata W Bengal India Indian Inst Technol Jodhpur Jodhpur Rajasthan India Natl Taiwan Univ New Taipei Taiwan
This paper reports on the NTIRE 2022 challenge on perceptual image quality assessment (IQA), held in conjunction with the New Trends in Image Restoration and Enhancement workshop (NTIRE) workshop at CVPR 2022. This ch... 详细信息
来源: 评论