咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是771-780 订阅
排序:
Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing
Dressing in Order: Recurrent Person Image Generation for Pos...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Cui, Aiyu McKee, Daniel Lazebnik, Svetlana Univ Illinois Champaign IL 61820 USA
We propose a flexible person generation framework called Dressing in Order (DiOr), which supports 2D pose transfer, virtual try-on, and several fashion editing tasks. The key to DiOr is a novel recurrent generation pi... 详细信息
来源: 评论
Dual Contrastive Learning for Unsupervised Image-to-Image Translation
Dual Contrastive Learning for Unsupervised Image-to-Image Tr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Han, Junlin Shoeiby, Mehrdad Petersson, Lars Armin, Mohammad Ali DATA61 CSIRO Canberra ACT Australia Australian Natl Univ Canberra ACT Australia
Unsupervised image-to-image translation tasks aim to find a mapping between a source domain X and a target domain Y from unpaired training data. Contrastive learning for Unpaired image-to-image Translation (CUT) yield... 详细信息
来源: 评论
Multi-View Mesh Reconstruction with Neural Deferred Shading
Multi-View Mesh Reconstruction with Neural Deferred Shading
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Worchel, Markus Diaz, Rodrigo Hu, Weiwen Schreer, Oliver Feldmann, Ingo Eisert, Peter Fraunhofer HHI Berlin Germany TU Berlin Berlin Germany Queen Mary Univ London London England HU Berlin Berlin Germany
We propose an analysis-by-synthesis method for fast multi-view 3D reconstruction of opaque objects with arbitrary materials and illumination. State-of-the-art methods use both neural surface representations and neural... 详细信息
来源: 评论
Sign Language Production: A Review
Sign Language Production: A Review
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Rastgoo, Razieh Kiani, Kourosh Escalera, Sergio Sabokrou, Mohammad Semnan Univ Semnan Iran Inst Res Fundamental Sci IPM Tehran Iran Univ Barcelona Barcelona Spain Comp Vis Ctr Barcelona Spain
Sign Language is the dominant yet non-primary form of communication language used in the deaf and hearing-impaired community. To make an easy and mutual communication between the hearing-impaired and the hearing commu... 详细信息
来源: 评论
Manipulation Detection in Satellite Images Using vision Transformer
Manipulation Detection in Satellite Images Using Vision Tran...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Horvath, Janos Baireddy, Sriram Hao, Hanxiang Montserrat, Daniel Mas Delp, Edward J. Purdue Univ Sch Elect & Comp Engn Video & Image Proc Lab VIPER W Lafayette IN 47907 USA
A growing number of commercial satellite companies provide easily accessible satellite imagery. Overhead imagery is used by numerous industries including agriculture, forestry, natural disaster analysis, and meteorolo... 详细信息
来源: 评论
SBNet: Segmentation-based Network for Natural Language-based Vehicle Search
SBNet: Segmentation-based Network for Natural Language-based...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lee, Sangrok Woo, Taekang Lee, Sang Hun MODULABS Seoul South Korea NAVER Corp Seongnam Si South Korea Kookmin Univ Seoul South Korea
Natural language-based vehicle retrieval is a task to find a target vehicle within a given image based on a natural language description as a query. This technology can be applied to various areas including police sea... 详细信息
来源: 评论
DarkLight Networks for Action recognition in the Dark
DarkLight Networks for Action Recognition in the Dark
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Rui Chen, Jiajun Liang, Zixi Gao, Huaien Lin, Shan Guangzhou Xi Ma Informat Technol Co 101 Waihuan Xi Rd Guangzhou 510006 Guangdong Peoples R China
Human action recognition in the dark is a significant task with various applications, e.g., night surveillance and self-driving at night. However, the lack of video datasets for human actions in the dark hinders its d... 详细信息
来源: 评论
Shot in the Dark: Few-Shot Learning with No Base-Class Labels
Shot in the Dark: Few-Shot Learning with No Base-Class Label...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Zitian Maji, Subhransu Learned-Miller, Erik Univ Massachusetts Amherst Amherst MA 01003 USA
Few-shot learning aims to build classifiers for new classes from a small number of labeled examples and is commonly facilitated by access to examples from a distinct set of 'base classes'. The difference in da... 详细信息
来源: 评论
Pastiche Master: Exemplar-Based High-Resolution Portrait Style Transfer
Pastiche Master: Exemplar-Based High-Resolution Portrait Sty...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yang, Shuai Jiang, Liming Liu, Ziwei Loy, Chen Change Nanyang Technol Univ S Lab Singapore Singapore
Recent studies on StyleGAN show high performance on artistic portrait generation by transfer learning with limited data. In this paper, we explore more challenging exemplar-based high-resolution portrait style transfe... 详细信息
来源: 评论
Engineering Sketch Generation for computer-Aided Design
Engineering Sketch Generation for Computer-Aided Design
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Willis, Karl D. D. Jayaraman, Pradeep Kumar Lambourne, Joseph G. Chu, Hang Pu, Yewen Autodesk Res Shanghai Peoples R China
Engineering sketches form the 2D basis of parametric computer-Aided Design (CAD), the foremost modeling paradigm for manufactured objects. In this paper we tackle the problem of learning based engineering sketch gener... 详细信息
来源: 评论