咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是831-840 订阅
排序:
Deep Image Compression with Latent Optimization and Piece-wise Quantization Approximation
Deep Image Compression with Latent Optimization and Piece-wi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, Yuyang Qi, Zhiyang Zheng, Huiming Tao, Lvfang Gao, Wei Peking Univ Sch Elect & Comp Engn Shenzhen Grad Sch Shenzhen Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Benefit from its capability of learning high-dimensional compact representation from raw data, the auto-encoders are widely used in various tasks of data compression. In particular, for deep image compression, auto-en... 详细信息
来源: 评论
What Affects Learned Equivariance in Deep Image recognition Models?
What Affects Learned Equivariance in Deep Image Recognition ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Robert-Jan Bruintjes Tomasz Motyka Jan van Gemert Computer Vision Lab Delft University of Technology Synerise
Equivariance w.r.t. geometric transformations in neural networks improves data efficiency, parameter efficiency and robustness to out-of-domain perspective shifts. When equivariance is not designed into a neural netwo...
来源: 评论
Combining Magnification and Measurement for Non-Contact Cardiac Monitoring
Combining Magnification and Measurement for Non-Contact Card...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Nowara, Ewa M. McDuff, Daniel Veeraraghavan, Ashok Rice Univ Houston TX 77251 USA Microsoft Res Redmond WA USA
Deep learning approaches currently achieve the state-of-the-art results on camera-based vital signs measurement. One of the main challenges with using neural models for these applications is the lack of sufficiently l... 详细信息
来源: 评论
Generalizable Multi-Camera 3D Pedestrian Detection
Generalizable Multi-Camera 3D Pedestrian Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lima, Joao Paulo Roberto, Rafael Figueiredo, Lucas Simoes, Francisco Teichrieb, Veronica Univ Fed Pernambuco Ctr Informat Voxar Labs Recife PE Brazil Univ Fed Rural Pernambuco Dept Comp Recife PE Brazil
We present a multi-camera 3D pedestrian detection method that does not need to train using data from the target scene. We estimate pedestrian location on the ground plane using a novel heuristic based on human body po... 详细信息
来源: 评论
DeepObjStyle: Deep Object-based Photo Style Transfer
DeepObjStyle: Deep Object-based Photo Style Transfer
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mastan, Indra Deep Raman, Shanmuganathan Indian Inst Technol Gandhinagar Gandhinagar Gujarat India
One of the major challenges of style transfer is the appropriate image features supervision between the output image and the input images (style and content). An efficient strategy would be to define an object map bet... 详细信息
来源: 评论
Live Demo: E2P–Events to Polarization Reconstruction from PDAVIS Events
Live Demo: E2P–Events to Polarization Reconstruction from P...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Tobi Delbruck Zuowen Wang Haiyang Mei Germain Haessig Damien Joubert Justin Haque Yingkai Chen Moritz B. Milde Viktor Gruev Sensors Group Institute of Neuroinformatics Univ. of Zurich and ETH Zurich Switzerland AIT Austrian Institute of Technology Center for Vision Automation & Control High-Performance Vision Systems Vienna Austria Intl. Centre for Neuromorphic Systems The MARCS Institute Western Sydney University Sydney Australia Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL USA
This demonstration shows live operation of of PDAVIS polarization event camera reconstruction by the E2P DNN reported in the main CVPR conference paper Deep Polarization Reconstruction with PDAVIS Events (paper 9149 [...
来源: 评论
TAEN: Temporal Aware Embedding Network for Few-Shot Action recognition
TAEN: Temporal Aware Embedding Network for Few-Shot Action R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ben-Ari, Rami Nacson, Mor Shpigel Azulai, Ophir Barzelay, Udi Rotman, Daniel OriginAI Haifa Israel Technion Haifa Israel IBM Res AI Haifa Israel
Classification of new class entities requires collecting and annotating hundreds or thousands of samples that is often prohibitively costly. Few-shot learning suggests learning to classify new classes using just a few... 详细信息
来源: 评论
Interpolation-Based Event Visual Data Filtering Algorithms
Interpolation-Based Event Visual Data Filtering Algorithms
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Marcin Kowalczyk Tomasz Kryjak Embedded Vision Systems Group AGH University of Krakow
The field of neuromorphic vision is developing rapidly, and event cameras are finding their way into more and more applications. However, the data stream from these sensors is characterised by significant noise. In th...
来源: 评论
NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results
NTIRE 2022 Challenge on Super-Resolution and Quality Enhance...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yang, Ren Timofte, Radu Zheng, Meisong Xing, Qunliang Qiao, Minglang Xu, Mai Jiang, Lai Liu, Huaida Chen, Ying Ben, Youcheng Zhou, Xiao Fu, Chen Cheng, Pei Yu, Gang Li, Junyi Wu, Renlong Zhang, Zhilu Shang, Wei Lv, Zhengyao Chen, Yunjin Zhou, Mingcai Ren, Dongwei Zhang, Kai Zuo, Wangmeng Ostyakov, Pavel Dmitry, Vyal Soltanayev, Shakarim Sergey, Chervontsev Magauiya, Zhussip Zou, Xueyi Yan, Youliang Michelini, Pablo Navarrete Lu, Yunhua Zhang, Diankai Liu, Shaoli Gao, Si Wu, Biao Zheng, Chengjian Zhang, Xiaofeng Lu, Kaidi Wang, Ning Thuong Nguyen Canh Bach, Thong Wang, Qing Sun, Xiaopeng Ma, Haoyu Zhao, Shijie Li, Junlin Xie, Liangbin Shi, Shuwei Yang, Yujiu Wang, Xintao Gu, Jinjin Dong, Chao Shi, Xiaodi Nian, Chunmei Jiang, Dong Lin, Jucai Xie, Zhihuai Ye, Mao Luo, Dengyan Peng, Liuhan Chen, Shengjie Liu, Xin Wang, Qian Liang, Boyang Dong, Hang Huang, Yuhao Chen, Kai Guo, Xingbei Sun, Yujing Wu, Huilei Wei, Pengxu Huang, Yulin Chen, Junying Lee, Ik Hyun Khowaja, Sunder Ali Yoon, Jiseok Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Julius Maximilian Univ Wurzburg Wurzburg Germany Alibaba Grp Dept Tao Technol Beijing Peoples R China Beihang Univ Beijing Peoples R China Tencent Shenzhen Peoples R China Harbin Inst Technol Harbin Peoples R China Huawei Noahs Ark Lab Hong Kong Peoples R China BOE Technol Grp Co Ltd Beijing Peoples R China ZTE Audio & Video Technol Platform Dept Nanjing Peoples R China Osaka Univ Osaka Japan ByteDance Shenzhen Peoples R China Shanghai AI Lab Shanghai Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol SIAT Shenzhen Peoples R China Hangzhou Univ Elect Sci & Technol Hangzhou Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China Xinjiang Univ Urumqi Xinjiang Peoples R China China Mobile Res Inst Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China Peking Univ Beijing Peoples R China City Univ Hong Kong Hong Kong Peoples R China South China Univ Technol Guangzhou Peoples R China Tech Univ Korea Siheung Si South Korea Univ Sindh Sindh Pakistan IKLAB New York NY USA
This paper reviews the NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video. In this challenge, we proposed the LDV 2.0 dataset, which includes the LDV dataset (240 videos) and 95 addit... 详细信息
来源: 评论
Boosting Adversarial Robustness using Feature Level Stochastic Smoothing
Boosting Adversarial Robustness using Feature Level Stochast...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Addepalli, Sravanti Jain, Samyak Sriramanan, Gaurang Babu, R. Venkatesh Indian Inst Sci Video Analyt Lab Dept Computat & Data Sci Bangalore Karnataka India
Advances in adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks. However, the robust accuracy of present state-of-the-art defenses is far from the requirements in criti... 详细信息
来源: 评论