咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是851-860 订阅
排序:
Cross-Domain Multi-task Learning for Object Detection and Saliency Estimation
Cross-Domain Multi-task Learning for Object Detection and Sa...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Khattar, Apoorv Hegde, Srinidhi Hebbalaguppe, Ramya TCS Res Mumbai Maharashtra India
Multi-task learning (MTL) is a learning paradigm that aims at joint optimization of multiple tasks using a single neural network for better performance and generalization. In practice, MTL rests on the inherent assump... 详细信息
来源: 评论
Occlusion Guided Scene Flow Estimation on 3D Point Clouds
Occlusion Guided Scene Flow Estimation on 3D Point Clouds
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ouyang, Bojun Raviv, Dan Tel Aviv Univ Tel Aviv Israel
3D scene flow estimation is a vital tool in perceiving our environment given depth or range sensors. Unlike optical flow, the data is usually sparse and in most cases partially occluded in between two temporal samplin... 详细信息
来源: 评论
Two-stage Network For Single Image Super-Resolution
Two-stage Network For Single Image Super-Resolution
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Han, Yuzhuo Du, Xiaobiao Yang, Zhi Dalian Univ Technol Dalian Peoples R China Jilin Univ Zhuhai Coll Zhuhai Peoples R China Dibaocheng Shanghai Med Imaging Technol Co Ltd Shanghai Peoples R China
The task of single-image super-resolution (SISR) is a highly inverse problem because it is very challenging to reconstruct rich details from blurred images. Most previous super-resolution (SR) methods based on the con... 详细信息
来源: 评论
Localized Latent Updates for Fine-Tuning vision-Language Models
Localized Latent Updates for Fine-Tuning Vision-Language Mod...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Moritz Ibing Isaak Lim Leif Kobbelt Visual Computing Institute RWTH Aachen University
Although massive pre-trained vision-language models like CLIP show impressive generalization capabilities for many tasks, still it often remains necessary to fine-tune them for improved performance on specific dataset...
来源: 评论
T-DEED: Temporal-Discriminability Enhancer Encoder-Decoder for Precise Event Spotting in Sports Videos
T-DEED: Temporal-Discriminability Enhancer Encoder-Decoder f...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Artur Xarles Sergio Escalera Thomas B. Moeslund Albert Clapés Universitat de Barcelona Spain Computer Vision Center Spain Aalborg University Denmark
In this paper, we introduce T-DEED, a Temporal-Discriminability Enhancer Encoder-Decoder for Precise Event Spotting in sports videos. T-DEED addresses multiple challenges in the task, including the need for discrimina... 详细信息
来源: 评论
A Simple Baseline for Fast and Accurate Depth Estimation on Mobile Devices
A Simple Baseline for Fast and Accurate Depth Estimation on ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Tencent GY Lab Shenzhen Peoples R China
In this paper, we propose a simple but effective encoder-decoder based network for fast and accurate depth estimation on mobile devices. Unlike other depth estimation methods using heavy context modeling modules, the ... 详细信息
来源: 评论
Beyond VQA: Generating Multi-word Answers and Rationales to Visual Questions
Beyond VQA: Generating Multi-word Answers and Rationales to ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dua, Radhika Kancheti, Sai Srinivas Balasubramanian, Vineeth N. Indian Inst Technol Hyderabad Hyderabad India
Visual Question Answering is a multi-modal task that aims to measure high-level visual understanding. Contemporary VQA models are restrictive in the sense that answers are obtained via classification over a limited vo... 详细信息
来源: 评论
Adaptive Spatial-Temporal Fusion of Multi-Objective Networks for Compressed Video Perceptual Enhancement
Adaptive Spatial-Temporal Fusion of Multi-Objective Networks...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zheng, He Li, Xin Liu, Fanglong Jiang, Lielin Zhang, Qi Li, Fu Dang, Qingqing He, Dongliang Baidu Inc Dept Comp Vis Technol VIS Bldg 2Baidu Sci Pk Beijing Peoples R China
Perceptual quality enhancement of heavily compressed videos is a difficult, unsolved problem because there still not exists a suitable perceptual similarity loss function between two video pairs. Motivated by the fact... 详细信息
来源: 评论
Traffic Video Event Retrieval via Text Query using Vehicle Appearance and Motion Attributes
Traffic Video Event Retrieval via Text Query using Vehicle A...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Tien-Phat Nguyen Ba-Thinh Tran-Le Xuan-Dang Thai Nguyen, Tam, V Do, Minh N. Minh-Triet Tran Univ Sci Ho Chi Minh City Vietnam Vietnam Natl Univ Ho Chi Minh City Vietnam John von Neumann Inst Ho Chi Minh City Vietnam Univ Dayton Dayton OH 45469 USA Univ Illinois Urbana IL USA
Traffic event retrieval is one of the important tasks for intelligent traffic system management. To find accurate candidate events in traffic videos corresponding to a specific text query, it is necessary to understan... 详细信息
来源: 评论
Long-Tailed recognition of SAR Aerial View Objects by Cascading and Paralleling Experts
Long-Tailed Recognition of SAR Aerial View Objects by Cascad...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yang, Cheng-Yen Hsu, Hung-Min Cai, Jiarui Hwang, Jenq-Neng Univ Washington Dept Elect & Comp Engn Seattle WA 98195 USA
Aerial View Object Classification (AVOC) has started to adopt deep learning approaches with significant success in recent years, but limited to optical data. On the other hand, Synthetic Aperture Radar (SAR) has wild ... 详细信息
来源: 评论