咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 30 篇 sensetime res pe...
  • 29 篇 swiss fed inst t...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 26 篇 university of ch...
  • 25 篇 sun yat sen univ...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 23 篇 tsinghua univ pe...
  • 22 篇 peng cheng labor...
  • 21 篇 korea adv inst s...
  • 20 篇 shanghai ai lab ...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 16 篇 zha zheng-jun
  • 16 篇 radu timofte
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 liu shuai
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 11 篇 chen wei-ting
  • 11 篇 li chenghua
  • 11 篇 liu jing
  • 11 篇 van de weijer jo...
  • 11 篇 lei lei

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是861-870 订阅
排序:
Two-stage Network For Single Image Super-Resolution
Two-stage Network For Single Image Super-Resolution
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Han, Yuzhuo Du, Xiaobiao Yang, Zhi Dalian Univ Technol Dalian Peoples R China Jilin Univ Zhuhai Coll Zhuhai Peoples R China Dibaocheng Shanghai Med Imaging Technol Co Ltd Shanghai Peoples R China
The task of single-image super-resolution (SISR) is a highly inverse problem because it is very challenging to reconstruct rich details from blurred images. Most previous super-resolution (SR) methods based on the con... 详细信息
来源: 评论
Learning to Detect Phone-related Pedestrian Distracted Behaviors with Synthetic Data
Learning to Detect Phone-related Pedestrian Distracted Behav...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hatay, Emre Ma, Jin Sun, Huiming Fang, Jianwu Gao, Zhiqiang Yu, Hongkai Cleveland State Univ Cleveland OH 44115 USA Changan Univ Xian Peoples R China
Due to the popularity and mobility of smart phones, phone-related pedestrian distracted behaviors, e.g., Texting, Game Playing, and Phone calls, have caused many traffic fatalities and accidents. As an advanced driver... 详细信息
来源: 评论
DFM: A Performance Baseline for Deep Feature Matching
DFM: A Performance Baseline for Deep Feature Matching
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Efe, Ufuk Ince, Kutalmis Gokalp Alatan, A. Aydin Middle East Tech Univ Dept Elect & Elect Engn Ctr Image Anal OGAM Ankara Turkey
A novel image matching method is proposed that utilizes learned features extracted by an off-the-shelf deep neural network to obtain a promising performance. The proposed method uses pre-trained VGG architecture as a ... 详细信息
来源: 评论
Occlusion Guided Scene Flow Estimation on 3D Point Clouds
Occlusion Guided Scene Flow Estimation on 3D Point Clouds
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ouyang, Bojun Raviv, Dan Tel Aviv Univ Tel Aviv Israel
3D scene flow estimation is a vital tool in perceiving our environment given depth or range sensors. Unlike optical flow, the data is usually sparse and in most cases partially occluded in between two temporal samplin... 详细信息
来源: 评论
A Strong Baseline for Vehicle Re-Identification
A Strong Baseline for Vehicle Re-Identification
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Huynh, Su, V Nguyen, Nam H. Nguyen, Ngoc T. Nguyen, Vinh T. Q. Huynh, Chau Chuong Nguyen Cybercore AI Ho Chi Minh City Vietnam
Vehicle Re-Identification (Re-ID) aims to identify the same vehicle across different cameras, hence plays an important role in modern traffic management systems. The technical challenges require the algorithms must be... 详细信息
来源: 评论
Localized Latent Updates for Fine-Tuning vision-Language Models
Localized Latent Updates for Fine-Tuning Vision-Language Mod...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Moritz Ibing Isaak Lim Leif Kobbelt Visual Computing Institute RWTH Aachen University
Although massive pre-trained vision-language models like CLIP show impressive generalization capabilities for many tasks, still it often remains necessary to fine-tune them for improved performance on specific dataset...
来源: 评论
BGT-Net: Bidirectional GRU Transformer Network for Scene Graph Generation
BGT-Net: Bidirectional GRU Transformer Network for Scene Gra...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dhingra, Naina Ritter, Florian Kunz, Andreas Swiss Fed Inst Technol Innovat Ctr Virtual Real Zurich Switzerland
Scene graphs are nodes and edges consisting of objects and object-object relationships, respectively. Scene graph generation (SGG) aims to identify the objects and their relationships. We propose a bidirectional GRU (... 详细信息
来源: 评论
NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results
NTIRE 2022 Challenge on Super-Resolution and Quality Enhance...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yang, Ren Timofte, Radu Zheng, Meisong Xing, Qunliang Qiao, Minglang Xu, Mai Jiang, Lai Liu, Huaida Chen, Ying Ben, Youcheng Zhou, Xiao Fu, Chen Cheng, Pei Yu, Gang Li, Junyi Wu, Renlong Zhang, Zhilu Shang, Wei Lv, Zhengyao Chen, Yunjin Zhou, Mingcai Ren, Dongwei Zhang, Kai Zuo, Wangmeng Ostyakov, Pavel Dmitry, Vyal Soltanayev, Shakarim Sergey, Chervontsev Magauiya, Zhussip Zou, Xueyi Yan, Youliang Michelini, Pablo Navarrete Lu, Yunhua Zhang, Diankai Liu, Shaoli Gao, Si Wu, Biao Zheng, Chengjian Zhang, Xiaofeng Lu, Kaidi Wang, Ning Thuong Nguyen Canh Bach, Thong Wang, Qing Sun, Xiaopeng Ma, Haoyu Zhao, Shijie Li, Junlin Xie, Liangbin Shi, Shuwei Yang, Yujiu Wang, Xintao Gu, Jinjin Dong, Chao Shi, Xiaodi Nian, Chunmei Jiang, Dong Lin, Jucai Xie, Zhihuai Ye, Mao Luo, Dengyan Peng, Liuhan Chen, Shengjie Liu, Xin Wang, Qian Liang, Boyang Dong, Hang Huang, Yuhao Chen, Kai Guo, Xingbei Sun, Yujing Wu, Huilei Wei, Pengxu Huang, Yulin Chen, Junying Lee, Ik Hyun Khowaja, Sunder Ali Yoon, Jiseok Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Julius Maximilian Univ Wurzburg Wurzburg Germany Alibaba Grp Dept Tao Technol Beijing Peoples R China Beihang Univ Beijing Peoples R China Tencent Shenzhen Peoples R China Harbin Inst Technol Harbin Peoples R China Huawei Noahs Ark Lab Hong Kong Peoples R China BOE Technol Grp Co Ltd Beijing Peoples R China ZTE Audio & Video Technol Platform Dept Nanjing Peoples R China Osaka Univ Osaka Japan ByteDance Shenzhen Peoples R China Shanghai AI Lab Shanghai Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol SIAT Shenzhen Peoples R China Hangzhou Univ Elect Sci & Technol Hangzhou Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China Xinjiang Univ Urumqi Xinjiang Peoples R China China Mobile Res Inst Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China Peking Univ Beijing Peoples R China City Univ Hong Kong Hong Kong Peoples R China South China Univ Technol Guangzhou Peoples R China Tech Univ Korea Siheung Si South Korea Univ Sindh Sindh Pakistan IKLAB New York NY USA
This paper reviews the NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video. In this challenge, we proposed the LDV 2.0 dataset, which includes the LDV dataset (240 videos) and 95 addit... 详细信息
来源: 评论
Self-Supervised Learning of Remote Sensing Scene Representations Using Contrastive Multiview Coding
Self-Supervised Learning of Remote Sensing Scene Representat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Stojnic, Vladan Risojevic, Vladimir Univ Banja Luka Fac Elect Engn Banja Luka Bosnia & Herceg
In recent years self-supervised learning has emerged as a promising candidate for unsupervised representation learning. In the visual domain its applications are mostly studied in the context of images of natural scen... 详细信息
来源: 评论
NTIRE 2022 Burst Super-Resolution Challenge
NTIRE 2022 Burst Super-Resolution Challenge
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bhat, Goutam Danelljan, Martin Timofte, Radu Cao, Yizhen Cao, Yuntian Chen, Meiya Chen, Xihao Cheng, Shen Dudhane, Akshay Fan, Haoqiang Gang, Ruipeng Gao, Jian Gu, Yan Huang, Jie Huang, Liufeng Jo, Youngsu Kang, Sukju Khan, Salman Khan, Fahad Shahbaz Kondo, Yuki Li, Chenghua Li, Fangya Li, Jinjing Li, Youwei Li, Zechao Liu, Chenming Liu, Shuaicheng Liu, Zikun Liu, Zhuoming Luo, Ziwei Luo, Zhengxiong Mehta, Nancy Murala, Subrahmanyam Nam, Yoonchan Nakatani, Chihiro Ostyakov, Pavel Pan, Jinshan Song, Ge Sun, Jian Sun, Long Tang, Jinhui Ukita, Norimichi Wen, Zhihong Wu, Qi Wu, Xiaohe Xiao, Zeyu Xiong, Zhiwei Xu, Rongjian Xu, Ruikang Yan, Youliang Yang, Jialin Yang, Wentao Yang, Zhongbao Yasue, Fuma Yao, Mingde Yu, Lei Zhang, Cong Zamir, Syed Waqas Zhang, Jianxing Zhang, Shuohao Zhang, Zhilu Zheng, Qian Zhou, Gaofeng Zhussip, Magauiya Zou, Xueyi Zuo, Wangmeng Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Julius Maximilian Univ Wurzburg Wurzburg Germany Commun Univ China Beijing Peoples R China UHDTV Res & Applicat Lab Beijing Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China Harbin Inst Technol Harbin Peoples R China South China Univ Technol Guangzhou Peoples R China Megvii Technol Beijing Peoples R China Univ Elect Sci & Technol China UESTC Chengdu Peoples R China Xiaomi Beijing Peoples R China Huawei Noahs Ark Lab Shenzhen Peoples R China Nanjing Univ Sci & Technol Nanjing Peoples R China SRC B Beijing Peoples R China CASIA Beijing Peoples R China Indian Inst Technol Ropar IIT Ropar Rupnagar Punjab India Mohamed Bin Zayed Univ AI MBZUAI Abu Dhabi U Arab Emirates Incept Inst Artificial Intelligence IIAI Abu Dhabi U Arab Emirates MBZUAI Abu Dhabi U Arab Emirates Australian Natl Univ ANU Canberra ACT Australia Linkoping Univ Linkoping Sweden Toyota Technol Inst TTI Nagoya Aichi Japan Sogang Univ Seoul South Korea UESTC Chengdu Peoples R China USTC Hefei Peoples R China WHU Wuhan Peoples R China Univ Sci & Technol China Hefei Peoples R China
Burst super-resolution has received increased attention in recent years due to its applications in mobile photography. By merging information from multiple shifted images of a scene, burst super-resolution aims to rec... 详细信息
来源: 评论