咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 30 篇 sensetime res pe...
  • 29 篇 swiss fed inst t...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 26 篇 university of ch...
  • 25 篇 sun yat sen univ...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 23 篇 tsinghua univ pe...
  • 22 篇 peng cheng labor...
  • 21 篇 korea adv inst s...
  • 20 篇 shanghai ai lab ...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 16 篇 zha zheng-jun
  • 16 篇 radu timofte
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 liu shuai
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 11 篇 chen wei-ting
  • 11 篇 li chenghua
  • 11 篇 liu jing
  • 11 篇 van de weijer jo...
  • 11 篇 lei lei

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是931-940 订阅
排序:
Does Image Anonymization Impact computer vision Training?
Does Image Anonymization Impact Computer Vision Training?
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Håkon Hukkelås Frank Lindseth Deparment of Computer Science Norwegian University of Science and Technology
Image anonymization is widely adapted in practice to comply with privacy regulations in many regions. However, anonymization often degrades the quality of the data, reducing its utility for computer vision development...
来源: 评论
Assistive Signals for Deep Neural Network Classifiers
Assistive Signals for Deep Neural Network Classifiers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Pestana, Camilo Liu, Wei Glance, David Owens, Robyn Mian, Ajmal Univ Western Australia 35 Stirling Hwy Crawley WA 6009 Australia
Deep Neural Networks are brittle in that small changes in the input can drastically affect their prediction outcome and confidence. Consequently, research in this area mainly focus on adversarial attacks and defenses.... 详细信息
来源: 评论
Initialization and Transfer Learning of Stochastic Binary Networks from Real-Valued Ones
Initialization and Transfer Learning of Stochastic Binary Ne...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Livochka, Anastasiia Shekhovtsov, Alexander Ukrainian Catholic Univ Lvov Ukraine Czech Tech Univ Prague Czech Republic
We consider the training of binary neural networks (BNNs) using the stochastic relaxation approach, which leads to stochastic binary networks (SBNs). We identify that a severe obstacle to training deep SBNs without sk... 详细信息
来源: 评论
Collaborative Image and Object Level Features for Image Colourisation
Collaborative Image and Object Level Features for Image Colo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Pucci, Rita Micheloni, Christian Martinel, Niki Univ Udine Udine Italy
Image colourisation is an ill-posed problem, with multiple correct solutions which depend on the context and object instances present in the input datum. Previous approaches attacked the problem either by requiring in... 详细信息
来源: 评论
v2e: From Video Frames to Realistic DVS Events
v2e: From Video Frames to Realistic DVS Events
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hu, Yuhuang Liu, Shih-Chii Delbruck, Tobi Univ Zurich Inst Neuroinformat Zurich Switzerland Swiss Fed Inst Technol Zurich Switzerland
To help meet the increasing need for dynamic vision sensor (DVS) event camera data, this paper proposes the v2e toolbox that generates realistic synthetic DVS events from intensity frames. It also clarifies incorrect ... 详细信息
来源: 评论
CoCon: Cooperative-Contrastive Learning
CoCon: Cooperative-Contrastive Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Rai, Nishant Adeli, Ehsan Lee, Kuan-Hui Gaidon, Adrien Niebles, Juan Carlos Stanford Univ Stanford CA 94305 USA Toyota Res Inst Toyota Japan
Labeling videos at scale is impractical. Consequently, self-supervised visual representation learning is key for efficient video analysis. Recent success in learning image representations suggest contrastive learning ... 详细信息
来源: 评论
Leveraging Style and Content features for Text Conditioned Image Retrieval
Leveraging Style and Content features for Text Conditioned I...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chawla, Pranit Jandial, Surgan Badjatiya, Pinkesh Chopra, Ayush Sarkar, Mausoom Krishnamurthy, Balaji IIT Kharagpur Kharagpur W Bengal India IIT Hyderabad Kandi Telangana India Adobe Media & Data Sci Res Lab San Jose CA USA MIT Cambridge MA 02139 USA
Image Search is a fundamental task playing a significant role in the success of wide variety of frameworks and applications. However, with the increasing sizes of product catalogues and the number of attributes per pr... 详细信息
来源: 评论
Unsupervised Detection of Cancerous Regions in Histology Imagery using Image-to-Image Translation
Unsupervised Detection of Cancerous Regions in Histology Ima...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Stepec, Dejan Skocaj, Danijel Univ Ljubljana Fac Comp & Informat Sci Vecna Pot 113 Ljubljana 1000 Slovenia XLAB Doo Pot Za Brdom 100 Ljubljana 1000 Slovenia
Detection of visual anomalies refers to the problem of finding patterns in different imaging data that do not conform to the expected visual appearance and is a widely studied problem in different domains. Due to the ... 详细信息
来源: 评论
Robust Combination of Distributed Gradients Under Adversarial Perturbations
Robust Combination of Distributed Gradients Under Adversaria...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kim, Kwang In UNIST Ulsan South Korea
We consider distributed (gradient descent-based) learning scenarios where the server combines the gradients of learning objectives gathered from local clients. As individual data collection and learning environments c... 详细信息
来源: 评论
Camera Calibration and Player Localization in SoccerNet-v2 and Investigation of their Representations for Action Spotting
Camera Calibration and Player Localization in SoccerNet-v2 a...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Cioppa, Anthony Deliege, Adrien Magera, Floriane Giancola, Silvio Barnich, Olivier Ghanem, Bernard Van Droogenbroeck, Marc Univ Liege Liege Belgium EVS Broadcast Equipment Seraing Belgium KAUST Thuwal Saudi Arabia
Soccer broadcast video understanding has been drawing a lot of attention in recent years within data scientists and industrial companies. This is mainly due to the lucrative potential unlocked by effective deep learni... 详细信息
来源: 评论