咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是951-960 订阅
排序:
Assembly101: A Large-Scale Multi-View Video Dataset for Understanding Procedural Activities
Assembly101: A Large-Scale Multi-View Video Dataset for Unde...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sener, Fadime Chatterjee, Dibyadip Shelepov, Daniel He, Kun Singhania, Dipika Wang, Robert Yao, Angela Meta Real Labs Res Pittsburgh PA 15222 USA Natl Univ Singapore Singapore Singapore
Assembly101 is a new procedural activity dataset featuring 4321 videos of people assembling and disassembling 101 "take-apart" toy vehicles. Participants work without fixed instructions, and the sequences fe... 详细信息
来源: 评论
Dynamic Appearance Modelling from Minimal Cameras
Dynamic Appearance Modelling from Minimal Cameras
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bridgeman, Lewis Guillemaut, Jean-Yves Hilton, Adrian Univ Surrey CVSSP Guildford Surrey England
We present a novel method for modelling dynamic texture appearance from a minimal set of cameras. Previous methods to capture the dynamic appearance of a human from multi-view video have relied on large, expensive cam... 详细信息
来源: 评论
Low Bandwidth Video-Chat Compression using Deep Generative Models
Low Bandwidth Video-Chat Compression using Deep Generative M...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Oquab, Maxime Stock, Pierre Gafni, Oran Haziza, Daniel Xu, Tao Zhang, Peizhao Celebi, Onur Hasson, Yana Labatut, Patrick Bose-Kolanu, Bobo Peyronel, Thibault Couprie, Camille Facebook Menlo Pk CA 94025 USA INRIA Le Chesnay France
To unlock video chat for hundreds of millions of people hindered by poor connectivity or unaffordable data costs, we propose to authentically reconstruct faces on the receiver's device using facial landmarks extra... 详细信息
来源: 评论
DVS-OUTLAB: A Neuromorphic Event-Based Long Time Monitoring Dataset for Real-World Outdoor Scenarios
DVS-OUTLAB: A Neuromorphic Event-Based Long Time Monitoring ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bolten, Tobias Pohle-Froehlich, Regina Toennies, Klaus D. Hsch Niederrhein Inst Pattern Recognit Krefeld Germany Univ Magdeburg Dept Simulat & Graph Magdeburg Germany
Neuromorphic vision sensors are biologically inspired devices which differ fundamentally from well known frame-based sensors. Even though developments in this research area are increasing, applications that rely entir... 详细信息
来源: 评论
vision-based Neural Scene Representations for Spacecraft
Vision-based Neural Scene Representations for Spacecraft
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mergy, Anne Lecuyer, Gurvan Derksen, Dawa Izzo, Dario European Space Agcy Noordwijk NL-2201 AZ Noordwijk Netherlands
In advanced mission concepts with high levels of autonomy, spacecraft need to internally model the pose and shape of nearby orbiting objects. Recent works in neural scene representations show promising results for inf... 详细信息
来源: 评论
Task Discrepancy Maximization for Fine-grained Few-Shot Classification
Task Discrepancy Maximization for Fine-grained Few-Shot Clas...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lee, SuBeen Moon, WonJun Heo, Jae-Pil Sungkyunkwan Univ Seoul South Korea
Recognizing discriminative details such as eyes and beaks is important for distinguishing fine-grained classes since they have similar overall appearances. In this regard, we introduce Task Discrepancy Maximization (T... 详细信息
来源: 评论
Adversarial Threats to DeepFake Detection: A Practical Perspective
Adversarial Threats to DeepFake Detection: A Practical Persp...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Neekhara, Paarth Dolhansky, Brian Bitton, Joanna Ferrer, Cristian Canton Univ Calif San Diego La Jolla CA 92093 USA Facebook AI Menlo Pk CA USA
Facially manipulated images and videos or DeepFakes can be used maliciously to fuel misinformation or defame individuals. Therefore, detecting DeepFakes is crucial to increase the credibility of social media platforms... 详细信息
来源: 评论
SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos
SoccerNet-v2: A Dataset and Benchmarks for Holistic Understa...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Deliege, Adrien Cioppa, Anthony Giancola, Silvio Seikavandi, Meisam J. Dueholm, Jacob, V Nasrollahi, Kamal Ghanem, Bernard Moeslund, Thomas B. Van Droogenbroeck, Marc Univ Liege Liege Belgium KAUST Thuwal Saudi Arabia Aalborg Univ Aalborg Denmark Milestone Syst Brondby Denmark
Understanding broadcast videos is a challenging task in computer vision, as it requires generic reasoning capabilities to appreciate the content offered by the video editing. In this work, we propose SoccerNet-v2, a n... 详细信息
来源: 评论
Connecting NeRFs, Images, and Text
Connecting NeRFs, Images, and Text
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Francesco Ballerini Pierluigi Zama Ramirez Roberto Mirabella Samuele Salti Luigi Di Stefano University of Bologna
Neural Radiance Fields (NeRFs) have emerged as a standard framework for representing 3D scenes and objects, introducing a novel data type for information exchange and storage. Concurrently, significant progress has be... 详细信息
来源: 评论
Neural Volumetric Object Selection
Neural Volumetric Object Selection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ren, Zhongzheng Agarwala, Aseem Russell, Bryan Schwing, Alexander G. Wang, Oliver Univ Illinois Champaign IL 61820 USA Adobe Res San Jose CA USA
We introduce an approach for selecting objects in neural volumetric 3D representations, such as multi-plane images (MPI) and neural radiance fields (NeRF). Our approach takes a set of foreground and background 2D user... 详细信息
来源: 评论