咨询与建议

限定检索结果

文献类型

  • 3,310 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,936 篇 工学
    • 1,843 篇 计算机科学与技术...
    • 201 篇 软件工程
    • 147 篇 机械工程
    • 134 篇 光学工程
    • 41 篇 生物工程
    • 28 篇 信息与通信工程
    • 18 篇 电气工程
    • 13 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 360 篇 医学
    • 359 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 178 篇 理学
    • 137 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,738 篇 computer vision
  • 900 篇 training
  • 802 篇 conferences
  • 643 篇 pattern recognit...
  • 482 篇 computational mo...
  • 431 篇 computer archite...
  • 430 篇 task analysis
  • 426 篇 visualization
  • 350 篇 feature extracti...
  • 317 篇 semantics
  • 308 篇 three-dimensiona...
  • 243 篇 neural networks
  • 227 篇 benchmark testin...
  • 222 篇 cameras
  • 183 篇 image segmentati...
  • 177 篇 estimation
  • 168 篇 deep learning
  • 156 篇 measurement
  • 154 篇 object detection
  • 151 篇 data models

机构

  • 40 篇 univ sci & techn...
  • 31 篇 peng cheng lab p...
  • 29 篇 swiss fed inst t...
  • 29 篇 sensetime res pe...
  • 27 篇 university of sc...
  • 27 篇 zhejiang univ pe...
  • 26 篇 univ chinese aca...
  • 26 篇 swiss fed inst t...
  • 25 篇 university of ch...
  • 24 篇 tsinghua univ pe...
  • 24 篇 univ chinese aca...
  • 24 篇 nanyang technol ...
  • 24 篇 sun yat sen univ...
  • 22 篇 peng cheng labor...
  • 20 篇 shanghai ai lab ...
  • 20 篇 korea adv inst s...
  • 19 篇 chinese univ hon...
  • 19 篇 yonsei univ
  • 18 篇 peking univ peop...
  • 18 篇 tsinghua univers...

作者

  • 65 篇 timofte radu
  • 21 篇 loy chen change
  • 18 篇 van gool luc
  • 18 篇 radu timofte
  • 16 篇 zha zheng-jun
  • 14 篇 sun jian
  • 12 篇 fan haoqiang
  • 12 篇 chen wei-ting
  • 12 篇 lei lei
  • 12 篇 qiao yu
  • 11 篇 zheng wei-shi
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 qi tian
  • 11 篇 luc van gool
  • 11 篇 marcos v. conde
  • 11 篇 liu shuai
  • 11 篇 van de weijer jo...
  • 10 篇 danelljan martin
  • 10 篇 kim seon joo

语言

  • 3,311 篇 英文
  • 2 篇 其他
检索条件"任意字段=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020"
3313 条 记 录,以下是971-980 订阅
排序:
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data
Commonality in Natural Images Rescues GANs: Pretraining GANs...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Baek, Kyungjune Shim, Hyunjung Yonsei Univ Seoul South Korea
Transfer learning for GANs successfully improves generation performance under low-shot regimes. However, existing studies show that the pretrained model using a single benchmark dataset is not generalized to various t... 详细信息
来源: 评论
An Empirical Study of Vehicle Re-Identification on the AI City Challenge
An Empirical Study of Vehicle Re-Identification on the AI Ci...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Luo, Hao Chen, Weihua Xu, Xianzhe Gu, Jianyang Zhang, Yuqi Liu, Chong Jiang, Yiqi He, Shuting Wang, Fan Li, Hao Alibaba Grp Machine Intelligence Technol Lab Hangzhou Peoples R China
This paper introduces our solution for the Track2 in AI City Challenge 2021 (AICITY21). The Track2 is a vehicle re-identification (ReID) task with both the real-world data and synthetic data. We mainly focus on four p... 详细信息
来源: 评论
Is Multimodal vision Supervision Beneficial to Language?
Is Multimodal Vision Supervision Beneficial to Language?
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Avinash Madasu Vasudev Lal Department of Computer Science UNC Chapel Hill USA Cognitive Computing Research Intel Labs USA
vision (image & video) - Language (VL) pre-training is the recent popular paradigm that achieved state-of-the-art results on multi-modal tasks like image-retrieval, video-retrieval, visual question answering etc. ...
来源: 评论
MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices
MobileHumanPose: Toward real-time 3D human pose estimation i...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Choi, Sangbum Choi, Seokeon Kim, Changick Korea Adv Inst Sci & Technol Daejeon South Korea
Currently, 3D pose estimation methods are not compatible with a variety of low computational power devices because of efficiency and accuracy. In this paper, we revisit a pose estimation architecture from a viewpoint ... 详细信息
来源: 评论
VideoSAGE: Video Summarization with Graph Representation Learning
VideoSAGE: Video Summarization with Graph Representation Lea...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Jose M. Rojas Chaves Subarna Tripathi Intel Corporation Intel Labs
We propose a graph-based representation learning framework for video summarization. First, we convert an input video to a graph where nodes correspond to each of the video frames. Then, we impose sparsity on the graph... 详细信息
来源: 评论
End-to-End Multi-Person Pose Estimation with Transformers
End-to-End Multi-Person Pose Estimation with Transformers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Shi, Dahu Wei, Xing Li, Liangqi Ren, Ye Tan, Wenming Hikvis Res Inst Hangzhou Peoples R China Xi An Jiao Tong Univ Sch Software Engn Xian Peoples R China
Current methods of multi-person pose estimation typically treat the localization and association of body joints separately. In this paper, we propose the first filly end-to-end multi-person Pose Estimation framework w... 详细信息
来源: 评论
An End-to-End vision Transformer Approach for Image Copy Detection
An End-to-End Vision Transformer Approach for Image Copy Det...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Jiahe Steven Lee Wynne Hsu Mong Li Lee Institute of Data Science National University of Singapore Centre for Trusted Internet and Community National University of Singapore
Image copy detection is one of the pivotal tools to safeguard online information integrity. The challenge lies in determining whether a query image is an edited copy, which necessitates the identification of candidate... 详细信息
来源: 评论
NTIRE 2021 Multi-modal Aerial View Object Classification Challenge
NTIRE 2021 Multi-modal Aerial View Object Classification Cha...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Liu, Jerrick Inkawhich, Nathan Nina, Oliver Timofte, Radu Duan, Yuru Li, Gongzhe Geng, Xueli Cai, Huanqia Air Force Res Lab Albuquerque NM 87117 USA Univ Illinois Urbana IL 61801 USA Duke Univ Durham NC 27706 USA Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Northwestern Polytech Univ Changan Campus Xian Shaanxi Peoples R China Beihang Univ Beijing Peoples R China Xidian Univ Key Lab Intelligent Percept & Image Understanding Xian Peoples R China Dengzhuang South Rd Beijing Peoples R China
In this paper, we introduce the first Challenge on Multi-modal Aerial View Object Classification (MAVOC) in conjunction with the NTIRE 2021 workshop at CVPR. This challenge is composed of two different tracks using EO... 详细信息
来源: 评论
A ConvNet for the 2020s
A ConvNet for the 2020s
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Liu, Zhuang Mao, Hanzi Wu, Chao-Yuan Feichtenhofer, Christoph Darrell, Trevor Xie, Saining Facebook AI Res FAIR Menlo Pk CA 94025 USA Univ Calif Berkeley Berkeley CA USA
The "Roaring 20s" of visual recognition began with the introduction of vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the ... 详细信息
来源: 评论
Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning
Self-Sustaining Representation Expansion for Non-Exemplar Cl...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhu, Kai Zhai, Wei Cao, Yang Luo, Jiebo Zha, Zheng-Jun Univ Sci & Technol China Hefei Peoples R China Univ Rochester Rochester NY USA Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei Peoples R China
Non-exemplar class-incremental learning is to recognize both the old and new classes when old class samples cannot be saved. It is a challenging task since representation optimization and feature retention can only be... 详细信息
来源: 评论