咨询与建议

限定检索结果

文献类型

  • 1,993 篇 会议
  • 6 篇 期刊文献

馆藏范围

  • 1,999 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,105 篇 工学
    • 869 篇 计算机科学与技术...
    • 560 篇 信息与通信工程
    • 396 篇 软件工程
    • 315 篇 电气工程
    • 161 篇 光学工程
    • 114 篇 生物工程
    • 71 篇 控制科学与工程
    • 55 篇 电子科学与技术(可...
    • 53 篇 生物医学工程(可授...
    • 22 篇 机械工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
    • 21 篇 化学工程与技术
    • 21 篇 安全科学与工程
    • 17 篇 网络空间安全
    • 16 篇 交通运输工程
    • 11 篇 材料科学与工程(可...
    • 8 篇 土木工程
  • 463 篇 医学
    • 457 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
  • 391 篇 理学
    • 257 篇 物理学
    • 117 篇 生物学
    • 103 篇 数学
    • 35 篇 统计学(可授理学、...
    • 26 篇 化学
  • 110 篇 管理学
    • 62 篇 管理科学与工程(可...
    • 56 篇 图书情报与档案管...
    • 20 篇 工商管理
  • 16 篇 法学
    • 14 篇 社会学
  • 8 篇 农学
  • 7 篇 经济学
  • 3 篇 军事学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 382 篇 visual communica...
  • 226 篇 image coding
  • 187 篇 visualization
  • 171 篇 feature extracti...
  • 157 篇 training
  • 134 篇 image processing
  • 116 篇 deep learning
  • 87 篇 three-dimensiona...
  • 78 篇 image reconstruc...
  • 77 篇 image segmentati...
  • 74 篇 video coding
  • 71 篇 semantics
  • 69 篇 image color anal...
  • 67 篇 neural networks
  • 63 篇 cameras
  • 62 篇 convolution
  • 57 篇 object detection
  • 57 篇 computational mo...
  • 55 篇 task analysis
  • 55 篇 decoding

机构

  • 30 篇 shanghai jiao to...
  • 21 篇 shanghai jiao to...
  • 20 篇 institute of ima...
  • 20 篇 school of electr...
  • 19 篇 university of sc...
  • 16 篇 tianjin univ sch...
  • 14 篇 beijing universi...
  • 12 篇 school of remote...
  • 10 篇 university of el...
  • 9 篇 univ elect sci &...
  • 9 篇 tencent media la...
  • 9 篇 shanghai jiao to...
  • 8 篇 cas key laborato...
  • 7 篇 shenzhen interna...
  • 7 篇 peking universit...
  • 6 篇 zhejiang univers...
  • 6 篇 tianjin universi...
  • 6 篇 univ sci & techn...
  • 6 篇 school of inform...
  • 6 篇 school of artifi...

作者

  • 28 篇 zhai guangtao
  • 22 篇 li sumei
  • 22 篇 sumei li
  • 21 篇 shan liu
  • 19 篇 guangtao zhai
  • 19 篇 song li
  • 18 篇 li li
  • 16 篇 zhenzhong chen
  • 16 篇 min xiongkuo
  • 14 篇 dong liu
  • 13 篇 xie rong
  • 12 篇 li song
  • 12 篇 xiongkuo min
  • 12 篇 xin jin
  • 10 篇 heming sun
  • 10 篇 zhibo chen
  • 10 篇 zhu li
  • 9 篇 jin xin
  • 9 篇 sun heming
  • 9 篇 andré kaup

语言

  • 1,996 篇 英文
  • 3 篇 其他
检索条件"任意字段=2020 IEEE International Conference on Visual Communications and Image Processing, VCIP 2020"
1999 条 记 录,以下是91-100 订阅
排序:
MAiVAR: Multimodal Audio-image and Video Action Recognizer
MAiVAR: Multimodal Audio-Image and Video Action Recognizer
收藏 引用
ieee international conference on visual communications and image processing (vcip)
作者: Shaikh, Muhammad Bilal Chai, Douglas Islam, Syed Mohammed Shamsul Akhtar, Naveed Edith Cowan Univ 270 Joondalup Dr Perth WA 6027 Australia Univ Western Australia 35 Stirling Highway Perth WA 6009 Australia
Currently, action recognition is predominately performed on video data as processed by CNNs. We investigate if the representation process of CNNs can also be leveraged for multimodal action recognition by incorporatin... 详细信息
来源: 评论
Optimized MobileNetV2 Based on Model Pruning for image Classification
Optimized MobileNetV2 Based on Model Pruning for Image Class...
收藏 引用
ieee international conference on visual communications and image processing (vcip)
作者: Xiao, Peng Pang, Yuliang Feng, Hao Hao, Yu Xian Univ Posts & Telecommunicat Ctr Image & Informat Proc (CIIP) Xian Peoples R China
Due to the large memory requirement and a large amount of computation, traditional deep learning networks cannot run on mobile devices as well as embedded devices. In this paper, we propose a new mobile architecture c... 详细信息
来源: 评论
Block Importance Mapping for Video Encoding
Block Importance Mapping for Video Encoding
收藏 引用
ieee international conference on visual communications and image processing (vcip)
作者: Enhorn, Jack Hollmann, Christopher Sjoberg, Rickard Strom, Jacob Wennersten, Per Visual Technol Ericsson AB Ericsson Res Kista Sweden
This paper presents a novel video encoding algorithm called Block Importance Mapping. In this method, blocks are assigned a quantization parameter, QP, offset based on how likely the block samples are to be used as re... 详细信息
来源: 评论
Underwater image Enhancement with Multi-Scale Residual Attention Network
Underwater Image Enhancement with Multi-Scale Residual Atten...
收藏 引用
ieee international conference on visual communications and image processing (vcip) - visual communications in the Era of AI and Limited Resources
作者: Ueki, Yosuke Ikehara, Masaaki Keio Univ EEE Dept Yokohama Kanagawa 2238522 Japan
Underwater images suffer from low contrast, color distortion and visibility degradation due to the light scattering and attenuation. Over the past few years, the importance of underwater image enhancement has increase... 详细信息
来源: 评论
EDGE-PRESERVING SINGLE DEPTH image INTERPOLATION
EDGE-PRESERVING SINGLE DEPTH IMAGE INTERPOLATION
收藏 引用
ieee international conference on visual communications and image processing (vcip)
作者: Zhong, Gang Yu, Li Zhou, Peng Huazhong Univ Sci & Technol Dept Elect & Informat Engn Wuhan Peoples R China
Depth image upsampling is an important issue in three-dimensional (3D) applications. However, edge blurring artifacts are still challenging problems in depth image upsampling, resulting in jagged artifacts in synthesi... 详细信息
来源: 评论
Learning from the NN-based Compressed Domain with Deep Feature Reconstruction Loss
Learning from the NN-based Compressed Domain with Deep Featu...
收藏 引用
ieee international conference on visual communications and image processing (vcip)
作者: Chen, Liuhong Sun, Heming Zeng, Xiaoyang Fan, Yibo Fudan Univ Shanghai Peoples R China Waseda Univ Tokyo Japan JST PRESTO Saitama Japan
To speedup the image classification process which conventionally takes the reconstructed images as input, compressed domain methods choose to use the compressed images without decompression as input. Correspondingly, ... 详细信息
来源: 评论
Improving Latent Quantization of Learned image Compression with Gradient Scaling
Improving Latent Quantization of Learned Image Compression w...
收藏 引用
ieee international conference on visual communications and image processing (vcip)
作者: Sun, Heming Yu, Lu Katto, Jiro Waseda Univ Waseda Res Inst Sci & Engn Tokyo Japan Zhejiang Univ Inst Informat & Commun Engn Hangzhou Peoples R China JST PRESTO 4-1-8 Honcho Kawaguchi Saitama Japan Waseda Univ Dept Comp Sci & Commun Engn Tokyo Japan
Learned image compression (LIC) has shown its superior compression ability. Quantization is an inevitable stage to generate quantized latent for the entropy coding. To solve the non-differentiable problem of quantizat... 详细信息
来源: 评论
MULTI-MODEL PREDICTION FOR image SET COMPRESSION
MULTI-MODEL PREDICTION FOR IMAGE SET COMPRESSION
收藏 引用
ieee international conference on visual communications and image processing (vcip)
作者: Shi, Zhongbo Sun, Xiaoyan Wu, Feng Univ Sci & Technol China Hefei Anhui Peoples R China Microsoft Res Asia Beijing Peoples R China
The key task in image set compression is how to efficiently remove set redundancy among images and within a single image. In this paper, we propose the first multi-model prediction (MoP) method for image set compressi... 详细信息
来源: 评论
CROSS-COMPONENT SAMPLE OFFSET FOR image AND VIDEO CODING
CROSS-COMPONENT SAMPLE OFFSET FOR IMAGE AND VIDEO CODING
收藏 引用
ieee international conference on visual communications and image processing (vcip) - visual communications in the Era of AI and Limited Resources
作者: Du, Yixin Zhao, Xin Liu, Shan Tencent Amer 2747 Pk Blvd Palo Alto CA 94306 USA
Existing cross-component video coding technologies have shown great potential on improving coding efficiency. The fundamental insight of cross-component coding technology is respecting the statistical correlations amo... 详细信息
来源: 评论
DEPTH FROM DEFOCUS AND BLUR FOR SINGLE image
DEPTH FROM DEFOCUS AND BLUR FOR SINGLE IMAGE
收藏 引用
ieee international conference on visual communications and image processing (vcip)
作者: Sun, Huadong Zhao, Zhijie Jin, Xuesong Niu, Lianding Zhang, Lizhi Harbin Univ Commerce Sch Comp & Informat Engn Harbin Peoples R China
Depth for single image is a hot problem in computer vision, which is very important to 2D/3D image conversion. Generally, depth of the object in the scene varies with the amount of blur in the defocus images. So, dept... 详细信息
来源: 评论