咨询与建议

限定检索结果

文献类型

  • 11,414 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 11,423 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,979 篇 工学
    • 7,533 篇 计算机科学与技术...
    • 805 篇 机械工程
    • 401 篇 电气工程
    • 390 篇 软件工程
    • 231 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物工程
    • 37 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 4 篇 土木工程
    • 3 篇 轻工技术与工程
  • 3,137 篇 医学
    • 3,137 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 307 篇 理学
    • 200 篇 系统科学
    • 63 篇 物理学
    • 43 篇 生物学
    • 30 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 化学
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 艺术学

主题

  • 5,612 篇 computer vision
  • 2,584 篇 training
  • 2,092 篇 pattern recognit...
  • 1,682 篇 computational mo...
  • 1,496 篇 visualization
  • 1,343 篇 three-dimensiona...
  • 1,098 篇 semantics
  • 1,007 篇 benchmark testin...
  • 1,005 篇 codes
  • 927 篇 computer archite...
  • 898 篇 deep learning
  • 790 篇 task analysis
  • 708 篇 feature extracti...
  • 571 篇 conferences
  • 563 篇 face recognition
  • 520 篇 transformers
  • 517 篇 neural networks
  • 493 篇 object detection
  • 476 篇 image segmentati...
  • 452 篇 cameras

机构

  • 172 篇 univ sci & techn...
  • 150 篇 univ chinese aca...
  • 148 篇 tsinghua univ pe...
  • 145 篇 carnegie mellon ...
  • 136 篇 chinese univ hon...
  • 116 篇 peng cheng lab p...
  • 106 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 96 篇 sensetime res pe...
  • 95 篇 tsinghua univers...
  • 91 篇 shanghai ai lab ...
  • 85 篇 shanghai jiao to...
  • 83 篇 alibaba grp peop...
  • 81 篇 peng cheng labor...
  • 80 篇 zhejiang univers...
  • 80 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 university of ch...
  • 75 篇 australian natl ...
  • 75 篇 tech univ munich...

作者

  • 64 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 39 篇 tao dacheng
  • 35 篇 loy chen change
  • 32 篇 tian qi
  • 31 篇 zhou jie
  • 31 篇 sun jian
  • 30 篇 liu yang
  • 29 篇 vasconcelos nuno
  • 29 篇 qi tian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 luc van gool
  • 26 篇 pollefeys marc
  • 25 篇 liu xiaoming
  • 25 篇 ying shan

语言

  • 11,420 篇 英文
  • 3 篇 其他
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021"
11423 条 记 录,以下是11-20 订阅
排序:
Modality-Specific Strategies for Medical Image Segmentation Using Lightweight SAM Architectures
Modality-Specific Strategies for Medical Image Segmentation...
收藏 引用
International Challenge on Segment Anything in Medical Images on Laptop held in conjunction with the ieee/cvf conference on computer vision and pattern recognition, cvpr 2024
作者: Dao, Thuy Ye, Xincheng Scarsbrook, Joshua Balarupan, Gowrienanthan Ribeiro, Fernanda L. Bollmann, Steffen School of Electrical Engineering and Computer Science University of Queensland Brisbane Australia Queensland Digital Health Centre University of Queensland Brisbane Australia
Medical image segmentation tasks are often intricate and require medical domain expertise. Recent advancements in deep learning have expedited these demanding tasks, transitioning from specialized models tailored to e... 详细信息
来源: 评论
Segment Anything in Medical Images with nnUNet
Segment Anything in Medical Images with nnUNet
收藏 引用
International Challenge on Segment Anything in Medical Images on Laptop held in conjunction with the ieee/cvf conference on computer vision and pattern recognition, cvpr 2024
作者: Stock, Raphael Kirchhoff, Yannick Rokuss, Maximilian R. Ravindran, Ashis Maier-Hein, Klaus Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Karlsruhe Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Heidelberg Germany Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Heidelberg Germany
In this paper, we present an enhanced medical image segmentation approach leveraging the nnUNet framework, specifically tailored to integrate bounding box prompts for improved segmentation accuracy in resource-constra... 详细信息
来源: 评论
Learning Visual-Semantic Hierarchical Attribute Space for Interpretable Open-Set recognition
Learning Visual-Semantic Hierarchical Attribute Space for In...
收藏 引用
2025 ieee/cvf Winter conference on Applications of computer vision, WACV 2025
作者: Xu, Zhuo Xiang, Xiang School of Artificial Intelligence and Automation Huazhong University of Science and Technology National Key Lab of Multi-Spectral Information Intelligent Processing Technology Wuhan China Peng Cheng Lab China
In the field of open-set recognition, conventional models often focus on addressing challenges within a single hierarchical category, and these methods frequently lack inter-pretability. In this paper, we propose a no... 详细信息
来源: 评论
Channel Propagation Networks for Refreshable vision Transformer
Channel Propagation Networks for Refreshable Vision Transfor...
收藏 引用
2025 ieee/cvf Winter conference on Applications of computer vision, WACV 2025
作者: Go, Junhyeong Ryu, Jongbin Ajou University Korea Republic of
In this paper, we introduce the Channel Propagation method, which aims to increase the channels of the vision Transformer systematically. Skip connections are commonly acknowledged as a propagation approach that impro...
来源: 评论
Focusing on what to Decode and what to Train: SOV Decoding with Specific Target Guided DeNoising and vision Language Advisor
Focusing on what to Decode and what to Train: SOV Decoding w...
收藏 引用
2025 ieee/cvf Winter conference on Applications of computer vision, WACV 2025
作者: Chen, Junwen Wang, Yingcheng Yanai, Keiji The University of Electro-Communications Department of Informatics Tokyo Japan
Recent transformer-based methods achieve notable gains in the Human-object Interaction Detection (HOID) task by leveraging the detection of DETR and the prior knowledge of vision-Language Model (VLM). However, these m... 详细信息
来源: 评论
Focusing on what to Decode and what to Train: SOV Decoding with Specific Target Guided DeNoising and vision Language Advisor
Focusing on what to Decode and what to Train: SOV Decoding w...
收藏 引用
ieee Workshop on Applications of computer vision (WACV)
作者: Junwen Chen Yingcheng Wang Keiji Yanai Department of Informatics The University of Electro-Communications Tokyo Japan
Recent transformer-based methods achieve notable gains in the Human-object Interaction Detection (HOID) task by leveraging the detection of DETR and the prior knowledge of vision-Language Model (VLM). However, these m... 详细信息
来源: 评论
CoMoGAN: continuous model-guided image-to-image translation
CoMoGAN: continuous model-guided image-to-image translation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Pizzati, Fabio Cerri, Pietro de Charette, Raoul INRIA Vislab Le Chesnay Rocquencourt France Vislab Parma Pr Italy INRIA Le Chesnay Rocquencourt France
CoMoGAN is a continuous GAN relying on the unsupervised reorganization of the target data on a functional manifold. To that matter, we introduce a new Functional Instance Normalization layer and residual mechanism, wh... 详细信息
来源: 评论
Meta Pseudo Labels
Meta Pseudo Labels
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hieu Pham Dai, Zihang Xie, Qizhe Le, Quoc, V Google AI Brain Team Mountain View CA 94043 USA
We present Meta Pseudo Labels, a semi-supervised learning method that achieves a new state-of-the-art top-1 accuracy of 90.2% on ImageNet, which is 1.6% better than the existing state-of-the-art [16]. Like Pseudo Labe... 详细信息
来源: 评论
A Sliced Wasserstein Loss for Neural Texture Synthesis
A Sliced Wasserstein Loss for Neural Texture Synthesis
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Heitz, Eric Vanhoey, Kenneth Chambon, Thomas Belcour, Laurent Unity Technol Grenoble France
We address the problem of computing a textural loss based on the statistics extracted from the feature activations of a convolutional neural network optimized for object recognition (e.g. VGG-19). The underlying mathe... 详细信息
来源: 评论
Visual Navigation with Spatial Attention
Visual Navigation with Spatial Attention
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mayo, Bar Hazan, Tamir Tal, Ayellet Technion Haifa Israel
This work focuses on object goal visual navigation, aiming at finding the location of an object from a given class, where in each step the agent is provided with an egocentric RGB image of the scene. We propose to lea... 详细信息
来源: 评论