咨询与建议

限定检索结果

文献类型

  • 11,414 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 11,423 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,979 篇 工学
    • 7,533 篇 计算机科学与技术...
    • 805 篇 机械工程
    • 401 篇 电气工程
    • 390 篇 软件工程
    • 231 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物工程
    • 37 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 4 篇 土木工程
    • 3 篇 轻工技术与工程
  • 3,137 篇 医学
    • 3,137 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 307 篇 理学
    • 200 篇 系统科学
    • 63 篇 物理学
    • 43 篇 生物学
    • 30 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 化学
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 艺术学

主题

  • 5,612 篇 computer vision
  • 2,584 篇 training
  • 2,092 篇 pattern recognit...
  • 1,682 篇 computational mo...
  • 1,496 篇 visualization
  • 1,343 篇 three-dimensiona...
  • 1,098 篇 semantics
  • 1,007 篇 benchmark testin...
  • 1,005 篇 codes
  • 927 篇 computer archite...
  • 898 篇 deep learning
  • 790 篇 task analysis
  • 708 篇 feature extracti...
  • 571 篇 conferences
  • 563 篇 face recognition
  • 520 篇 transformers
  • 517 篇 neural networks
  • 493 篇 object detection
  • 476 篇 image segmentati...
  • 452 篇 cameras

机构

  • 172 篇 univ sci & techn...
  • 150 篇 univ chinese aca...
  • 148 篇 tsinghua univ pe...
  • 145 篇 carnegie mellon ...
  • 136 篇 chinese univ hon...
  • 116 篇 peng cheng lab p...
  • 106 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 96 篇 sensetime res pe...
  • 95 篇 tsinghua univers...
  • 91 篇 shanghai ai lab ...
  • 85 篇 shanghai jiao to...
  • 83 篇 alibaba grp peop...
  • 81 篇 peng cheng labor...
  • 80 篇 zhejiang univers...
  • 80 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 university of ch...
  • 75 篇 australian natl ...
  • 75 篇 tech univ munich...

作者

  • 64 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 39 篇 tao dacheng
  • 35 篇 loy chen change
  • 32 篇 tian qi
  • 31 篇 zhou jie
  • 31 篇 sun jian
  • 30 篇 liu yang
  • 29 篇 vasconcelos nuno
  • 29 篇 qi tian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 luc van gool
  • 26 篇 pollefeys marc
  • 25 篇 liu xiaoming
  • 25 篇 ying shan

语言

  • 11,420 篇 英文
  • 3 篇 其他
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021"
11423 条 记 录,以下是191-200 订阅
排序:
Pulsar: Efficient Sphere-based Neural Rendering
Pulsar: Efficient Sphere-based Neural Rendering
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lassner, Christoph Zollhofer, Michael Facebook Real Labs Redmond WA 98052 USA
We propose Pulsar, an efficient sphere-based differentiable rendering module that is orders of magnitude faster than competing techniques, modular, and easy-to-use due to its tight integration with PyTorch. Differenti... 详细信息
来源: 评论
ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows
ArtFlow: Unbiased Image Style Transfer via Reversible Neural...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: An, Jie Huang, Siyu Song, Yibing Dou, Dejing Liu, Wei Luo, Jiebo Univ Rochester Rochester NY 14627 USA Baidu Res Beijing Peoples R China Tencent AI Lab Shenzhen Peoples R China Tencent Data Platform Shenzhen Peoples R China
Universal style transfer retains styles from reference images in content images. While existing methods have achieved state-of-the-art style transfer performance, they are not aware of the content leak phenomenon that... 详细信息
来源: 评论
Fully Convolutional Networks for Panoptic Segmentation
Fully Convolutional Networks for Panoptic Segmentation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Yanwei Zhao, Hengshuang Qi, Xiaojuan Wang, Liwei Li, Zeming Sun, Jian Jia, Jiaya Chinese Univ Hong Kong Hong Kong Peoples R China Univ Oxford Oxford England Univ Hong Kong Hong Kong Peoples R China MEGVII Technol Beijing Peoples R China SmartMore Hong Kong Peoples R China
In this paper, we present a conceptually simple, strong, and efficient framework for panoptic segmentation, called Panoptic FCN. Our approach aims to represent and predict foreground things and background stuff in a u... 详细信息
来源: 评论
I Find Your Lack of Uncertainty in computer vision Disturbing
I Find Your Lack of Uncertainty in Computer Vision Disturbin...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Valdenegro-Toro, Matias German Res Ctr Artificial Intelligence Robert Hooke Str 1 D-28359 Bremen Germany
Neural networks are used for many real world applications, but often they have problems estimating their own confidence. This is particularly problematic for computer vision applications aimed at making high stakes de... 详细信息
来源: 评论
Natural Adversarial Examples
Natural Adversarial Examples
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hendrycks, Dan Zhao, Kevin Basart, Steven Steinhardt, Jacob Song, Dawn Univ Calif Berkeley Berkeley CA 94720 USA Univ Washington Seattle WA 98195 USA UChicago Chicago IL USA
We introduce two challenging datasets that reliably cause machine learning model performance to substantially degrade. The datasets are collected with a simple adversarial filtration technique to create datasets with ... 详细信息
来源: 评论
Representation Learning via Global Temporal Alignment and Cycle-Consistency
Representation Learning via Global Temporal Alignment and Cy...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hadji, Isma Derpanis, Konstantinos G. Jepson, Allan D. Samsung AI Ctr Toronto Toronto ON Canada
We introduce a weakly supervised method for representation learning based on aligning temporal sequences (e.g., videos) of the same process (e.g., human action). The main idea is to use the global temporal ordering of... 详细信息
来源: 评论
D2IM-Net: Learning Detail Disentangled Implicit Fields from Single Images
D<SUP>2</SUP>IM-Net: Learning Detail Disentangled Implicit F...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Manyi Zhang, Hao Simon Fraser Univ Burnaby BC Canada
We present the first single-view 3D reconstruction network aimed at recovering geometric details from an input image which encompass both topological shape structures and surface features. Our key idea is to train the... 详细信息
来源: 评论
Capsule Network is Not More Robust than Convolutional Network
Capsule Network is Not More Robust than Convolutional Networ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gu, Jindong Tresp, Volker Hu, Han Univ Munich Munich Germany Microsoft Res Asia Beijing Peoples R China
The Capsule Network is widely believed to be more robust than Convolutional Networks. However, there are no comprehensive comparisons between these two networks, and it is also unknown which components in the CapsNet ... 详细信息
来源: 评论
AdaBins: Depth Estimation Using Adaptive Bins
AdaBins: Depth Estimation Using Adaptive Bins
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Bhat, Shariq Farooq Alhashim, Ibraheem Wonka, Peter KAUST Thuwal Saudi Arabia
We address the problem of estimating a high quality dense depth map from a single RGB input image. We start out with a baseline encoder-decoder convolutional neural network architecture and pose the question of how th... 详细信息
来源: 评论
KeepAugment: A Simple Information-Preserving Data Augmentation Approach
KeepAugment: A Simple Information-Preserving Data Augmentati...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gong, Chengyue Wang, Dilin Li, Meng Chandra, Vikas Liu, Qiang Univ Texas Austin Austin TX 78712 USA Facebook Mountain View CA USA
Data augmentation (DA) is an essential technique for training state-of-the-art deep learning systems. In this paper, we empirically show that the standard data augmentation methods may introduce distribution shift and... 详细信息
来源: 评论