咨询与建议

限定检索结果

文献类型

  • 11,414 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 11,423 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,979 篇 工学
    • 7,533 篇 计算机科学与技术...
    • 805 篇 机械工程
    • 401 篇 电气工程
    • 390 篇 软件工程
    • 231 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物工程
    • 37 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 4 篇 土木工程
    • 3 篇 轻工技术与工程
  • 3,137 篇 医学
    • 3,137 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 307 篇 理学
    • 200 篇 系统科学
    • 63 篇 物理学
    • 43 篇 生物学
    • 30 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 化学
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 艺术学

主题

  • 5,612 篇 computer vision
  • 2,584 篇 training
  • 2,092 篇 pattern recognit...
  • 1,682 篇 computational mo...
  • 1,496 篇 visualization
  • 1,343 篇 three-dimensiona...
  • 1,098 篇 semantics
  • 1,007 篇 benchmark testin...
  • 1,005 篇 codes
  • 927 篇 computer archite...
  • 898 篇 deep learning
  • 790 篇 task analysis
  • 708 篇 feature extracti...
  • 571 篇 conferences
  • 563 篇 face recognition
  • 520 篇 transformers
  • 517 篇 neural networks
  • 493 篇 object detection
  • 476 篇 image segmentati...
  • 452 篇 cameras

机构

  • 172 篇 univ sci & techn...
  • 150 篇 univ chinese aca...
  • 148 篇 tsinghua univ pe...
  • 145 篇 carnegie mellon ...
  • 136 篇 chinese univ hon...
  • 116 篇 peng cheng lab p...
  • 106 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 96 篇 sensetime res pe...
  • 95 篇 tsinghua univers...
  • 91 篇 shanghai ai lab ...
  • 85 篇 shanghai jiao to...
  • 83 篇 alibaba grp peop...
  • 81 篇 peng cheng labor...
  • 80 篇 zhejiang univers...
  • 80 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 university of ch...
  • 75 篇 australian natl ...
  • 75 篇 tech univ munich...

作者

  • 64 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 39 篇 tao dacheng
  • 35 篇 loy chen change
  • 32 篇 tian qi
  • 31 篇 zhou jie
  • 31 篇 sun jian
  • 30 篇 liu yang
  • 29 篇 vasconcelos nuno
  • 29 篇 qi tian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 luc van gool
  • 26 篇 pollefeys marc
  • 25 篇 liu xiaoming
  • 25 篇 ying shan

语言

  • 11,420 篇 英文
  • 3 篇 其他
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021"
11423 条 记 录,以下是211-220 订阅
排序:
PSD: Principled Synthetic-to-Real Dehazing Guided by Physical Priors
PSD: Principled Synthetic-to-Real Dehazing Guided by Physica...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Zeyuan Wang, Yangchao Yang, Yang Liu, Dong Univ Sci & Technol China Hefei Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China
Deep learning-based methods have achieved remarkable performance for image dehazing. However, previous studies are mostly focused on training models with synthetic hazy images, which incurs performance drop when the m... 详细信息
来源: 评论
Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation
Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhou, Zixiang Zhang, Yang Foroosh, Hassan Univ Cent Florida Dept Comp Sci Orlando FL 32816 USA Waymo LLC Mountain View CA USA
Panoptic segmentation presents a new challenge in exploiting the merits of both detection and segmentation, with the aim of unifying instance segmentation and semantic segmentation in a single framework. However, an e... 详细信息
来源: 评论
Video Object Segmentation Using Global and Instance Embedding Learning
Video Object Segmentation Using Global and Instance Embeddin...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ge, Wenbin Lu, Xiankai Shen, Jianbing Beijing Inst Technol Beijing Peoples R China Shandong Univ Sch Software Jinan Peoples R China Incept Inst Artificial Intelligence Beijing Peoples R China
In this paper, we propose a feature embedding based video object segmentation (VOS) method which is simple, fast and effective. The current VOS task involves two main challenges: object instance differentiation and cr... 详细信息
来源: 评论
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
MOS: Towards Scaling Out-of-distribution Detection for Large...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Huang, Rui Li, Yixuan Univ Wisconsin Madison Dept Comp Sci Madison WI 53706 USA
Detecting out-of-distribution (OOD) inputs is a central challenge for safely deploying machine learning models in the real world. Existing solutions are mainly driven by small datasets, with low resolution and very fe... 详细信息
来源: 评论
Using Shape to Categorize: Low-Shot Learning with an Explicit Shape Bias
Using Shape to Categorize: Low-Shot Learning with an Explici...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Stojanov, Stefan Anh Thai Rehg, James M. Georgia Inst Technol Atlanta GA 30332 USA
It is widely accepted that reasoning about object shape is important for object recognition. However, the most powerful object recognition methods today do not explicitly make use of object shape during learning. In t... 详细信息
来源: 评论
PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency Training
PixMatch: Unsupervised Domain Adaptation via Pixelwise Consi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Melas-Kyriazi, Luke Manrai, Arjun K. Harvard Univ Cambridge MA 02138 USA Harvard Univ Boston Childrens Hosp Boston MA 02115 USA
Unsupervised domain adaptation is a promising technique for semantic segmentation and other computer vision tasks for which large-scale data annotation is costly and time-consuming. In semantic segmentation, it is att... 详细信息
来源: 评论
Semantic-aware Knowledge Distillation for Few-Shot Class-Incremental Learning
Semantic-aware Knowledge Distillation for Few-Shot Class-Inc...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cheraghian, Ali Rahman, Shafin Fang, Pengfei Roy, Soumava Kumar Petersson, Lars Harandi, Mehrtash Australian Natl Univ Canberra ACT Australia Data61 CSIRO Sydney NSW Australia North South Univ Dhaka Bangladesh Monash Univ Melbourne Vic Australia
Few-shot class incremental learning (FSCIL) portrays the problem of learning new concepts gradually, where only a few examples per concept are available to the learner. Due to the limited number of examples for traini... 详细信息
来源: 评论
Animating Pictures with Eulerian Motion Fields
Animating Pictures with Eulerian Motion Fields
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Holynski, Aleksander Curless, Brian Seitz, Steven M. Szeliski, Richard Univ Washington Seattle WA 98195 USA
In this paper, we demonstrate a fully automatic method for converting a still image into a realistic animated looping video. We target scenes with continuous fluid motion, such as flowing water and billowing smoke. Ou... 详细信息
来源: 评论
CGA-Net: Category Guided Aggregation for Point Cloud Semantic Segmentation
CGA-Net: Category Guided Aggregation for Point Cloud Semanti...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lu, Tao Wang, Limin Wu, Gangshan Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China
Previous point cloud semantic segmentation networks use the same process to aggregate features from neighbors of the same category and different categories. However, the joint area between two objects usually only occ... 详细信息
来源: 评论
RAFT-3D: Scene Flow using Rigid-Motion Embeddings
RAFT-3D: Scene Flow using Rigid-Motion Embeddings
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Teed, Zachary Deng, Jia Princeton Univ Princeton NJ 08544 USA
We address the problem of scene flow: given a pair of stereo or RGB-D video frames, estimate pixelwise 3D motion. We introduce RAFT-3D, a new deep architecture for scene flow. RAFT-3D is based on the RAFT model develo... 详细信息
来源: 评论