咨询与建议

限定检索结果

文献类型

  • 11,414 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 11,423 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,979 篇 工学
    • 7,533 篇 计算机科学与技术...
    • 805 篇 机械工程
    • 401 篇 电气工程
    • 390 篇 软件工程
    • 231 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物工程
    • 37 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 4 篇 土木工程
    • 3 篇 轻工技术与工程
  • 3,137 篇 医学
    • 3,137 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 307 篇 理学
    • 200 篇 系统科学
    • 63 篇 物理学
    • 43 篇 生物学
    • 30 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 化学
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 艺术学

主题

  • 5,612 篇 computer vision
  • 2,584 篇 training
  • 2,092 篇 pattern recognit...
  • 1,682 篇 computational mo...
  • 1,496 篇 visualization
  • 1,343 篇 three-dimensiona...
  • 1,098 篇 semantics
  • 1,007 篇 benchmark testin...
  • 1,005 篇 codes
  • 927 篇 computer archite...
  • 898 篇 deep learning
  • 790 篇 task analysis
  • 708 篇 feature extracti...
  • 571 篇 conferences
  • 563 篇 face recognition
  • 520 篇 transformers
  • 517 篇 neural networks
  • 493 篇 object detection
  • 476 篇 image segmentati...
  • 452 篇 cameras

机构

  • 172 篇 univ sci & techn...
  • 150 篇 univ chinese aca...
  • 148 篇 tsinghua univ pe...
  • 145 篇 carnegie mellon ...
  • 136 篇 chinese univ hon...
  • 116 篇 peng cheng lab p...
  • 106 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 96 篇 sensetime res pe...
  • 95 篇 tsinghua univers...
  • 91 篇 shanghai ai lab ...
  • 85 篇 shanghai jiao to...
  • 83 篇 alibaba grp peop...
  • 81 篇 peng cheng labor...
  • 80 篇 zhejiang univers...
  • 80 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 university of ch...
  • 75 篇 australian natl ...
  • 75 篇 tech univ munich...

作者

  • 64 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 39 篇 tao dacheng
  • 35 篇 loy chen change
  • 32 篇 tian qi
  • 31 篇 zhou jie
  • 31 篇 sun jian
  • 30 篇 liu yang
  • 29 篇 vasconcelos nuno
  • 29 篇 qi tian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 luc van gool
  • 26 篇 pollefeys marc
  • 25 篇 liu xiaoming
  • 25 篇 ying shan

语言

  • 11,420 篇 英文
  • 3 篇 其他
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021"
11423 条 记 录,以下是221-230 订阅
排序:
Representative Batch Normalization with Feature Calibration
Representative Batch Normalization with Feature Calibration
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gao, Shang-Hua Han, Qi Li, Duo Cheng, Ming-Ming Peng, Pai Nankai Univ CS TKLNDST Tianjin Peoples R China HKUST Hong Kong Peoples R China Tencent Shenzhen Peoples R China
Batch Normalization (BatchNorm) has become the default component in modern neural networks to stabilize training. In BatchNorm, centering and scaling operations, along with mean and variance statistics, are utilized f... 详细信息
来源: 评论
Cross-View Regularization for Domain Adaptive Panoptic Segmentation
Cross-View Regularization for Domain Adaptive Panoptic Segme...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Huang, Jiaxing Guan, Dayan Xiao, Aoran Lu, Shijian Nanyang Technol Univ Sch Comp Sci Engn Singapore Singapore
Panoptic segmentation unifies semantic segmentation and instance segmentation which has been attracting increasing attention in recent years. However, most existing research was conducted under a supervised learning s... 详细信息
来源: 评论
Truly shift-invariant convolutional neural networks
Truly shift-invariant convolutional neural networks
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chaman, Anadi Dokmanic, Ivan Univ Illinois Champaign IL 61820 USA Univ Basel Basel Switzerland
Thanks to the use of convolution and pooling layers, convolutional neural networks were for a long time thought to be shift-invariant. However, recent works have shown that the output of a CNN can change significantly... 详细信息
来源: 评论
Energy-Based Learning for Scene Graph Generation
Energy-Based Learning for Scene Graph Generation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Suhail, Mohammed Mittal, Abhay Siddiquie, Behjat Broaddus, Chris Eledath, Jayan Medioni, Gerard Sigal, Leonid Univ British Columbia Vancouver BC Canada Vector Inst AI Bengaluru India Canada CIFAR AI Chair Montreal PQ Canada Amazon Seattle WA USA
Traditional scene graph generation methods are trained using cross-entropy losses that treat objects and relationships as independent entities. Such a formulation, however, ignores the structure in the output space, i... 详细信息
来源: 评论
Efficient CNN Architecture for Multi-modal Aerial View Object Classification
Efficient CNN Architecture for Multi-modal Aerial View Objec...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Miron, Casian Pasarica, Alexandru Timofte, Radu Gheorghe Asachi Tech Univ MCC Resources SRL Iasi Romania
The NTIRE 2021 workshop features a Multi-modal Aerial View Object Classification Challenge. Its focus is on multi-sensor imagery classification in order to improve the performance of automatic target recognition (ATR)... 详细信息
来源: 评论
Explore Image Deblurring via Encoded Blur Kernel Space
Explore Image Deblurring via Encoded Blur Kernel Space
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Phong Tran Anh Tuan Tran Quynh Phung Minh Hoai VinAI Res Hanoi Vietnam VinUniversity Hanoi Vietnam SUNY Stony Brook Stony Brook NY 11790 USA
This paper introduces a method to encode the blur operators of an arbitrary dataset of sharp-blur image pairs into a blur kernel space. Assuming the encoded kernel space is close enough to in-the-wild blur operators, ... 详细信息
来源: 评论
Transformation Invariant Few-Shot Object Detection
Transformation Invariant Few-Shot Object Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Aoxue Li, Zhenguo Huawei Noahs Ark Lab Hong Kong Peoples R China
Few-shot object detection (FSOD) aims to learn detectors that can be generalized to novel classes with only a few instances. Unlike previous attempts that exploit meta-learning techniques to facilitate FSOD, this work... 详细信息
来源: 评论
The Translucent Patch: A Physical and Universal Attack on Object Detectors
The Translucent Patch: A Physical and Universal Attack on Ob...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zolfi, Alon Kravchik, Moshe Elovici, Yuval Shabtai, Asaf Ben Gurion Univ Negev Dept Software & Informat Syst Engn Beer Sheva Israel
Physical adversarial attacks against object detectors have seen increasing success in recent years. However, these attacks require direct access to the object of interest in order to apply a physical patch. Furthermor... 详细信息
来源: 评论
SetVAE: Learning Hierarchical Composition for Generative Modeling of Set-Structured Data
SetVAE: Learning Hierarchical Composition for Generative Mod...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kim, Jinwoo Yoo, Jaehoon Lee, Juho Hong, Seunghoon Korea Adv Inst Sci & Technol Daejeon South Korea
Generative modeling of set-structured data, such as point clouds, requires reasoning over local and global structures at various scales. However, adopting multi-scale frameworks for ordinary sequential data to a set-s... 详细信息
来源: 评论
Bilevel Online Adaptation for Out-of-Domain Human Mesh Reconstruction
Bilevel Online Adaptation for Out-of-Domain Human Mesh Recon...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Guan, Shanyan Xu, Jingwei Wang, Yunbo Ni, Bingbing Yang, Xiaokang Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai Peoples R China
This paper considers a new problem of adapting a pretrained model of human mesh reconstruction to out-of-domain streaming videos. However, most previous methods based on the parametric SMPL model [36] underperform in ... 详细信息
来源: 评论