咨询与建议

限定检索结果

文献类型

  • 11,414 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 11,423 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,979 篇 工学
    • 7,533 篇 计算机科学与技术...
    • 805 篇 机械工程
    • 401 篇 电气工程
    • 390 篇 软件工程
    • 231 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物工程
    • 37 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 4 篇 土木工程
    • 3 篇 轻工技术与工程
  • 3,137 篇 医学
    • 3,137 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 307 篇 理学
    • 200 篇 系统科学
    • 63 篇 物理学
    • 43 篇 生物学
    • 30 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 化学
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 艺术学

主题

  • 5,612 篇 computer vision
  • 2,584 篇 training
  • 2,092 篇 pattern recognit...
  • 1,682 篇 computational mo...
  • 1,496 篇 visualization
  • 1,343 篇 three-dimensiona...
  • 1,098 篇 semantics
  • 1,007 篇 benchmark testin...
  • 1,005 篇 codes
  • 927 篇 computer archite...
  • 898 篇 deep learning
  • 790 篇 task analysis
  • 708 篇 feature extracti...
  • 571 篇 conferences
  • 563 篇 face recognition
  • 520 篇 transformers
  • 517 篇 neural networks
  • 493 篇 object detection
  • 476 篇 image segmentati...
  • 452 篇 cameras

机构

  • 172 篇 univ sci & techn...
  • 150 篇 univ chinese aca...
  • 148 篇 tsinghua univ pe...
  • 145 篇 carnegie mellon ...
  • 136 篇 chinese univ hon...
  • 116 篇 peng cheng lab p...
  • 106 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 96 篇 sensetime res pe...
  • 95 篇 tsinghua univers...
  • 91 篇 shanghai ai lab ...
  • 85 篇 shanghai jiao to...
  • 83 篇 alibaba grp peop...
  • 81 篇 peng cheng labor...
  • 80 篇 zhejiang univers...
  • 80 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 university of ch...
  • 75 篇 australian natl ...
  • 75 篇 tech univ munich...

作者

  • 64 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 39 篇 tao dacheng
  • 35 篇 loy chen change
  • 32 篇 tian qi
  • 31 篇 zhou jie
  • 31 篇 sun jian
  • 30 篇 liu yang
  • 29 篇 vasconcelos nuno
  • 29 篇 qi tian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 luc van gool
  • 26 篇 pollefeys marc
  • 25 篇 liu xiaoming
  • 25 篇 ying shan

语言

  • 11,420 篇 英文
  • 3 篇 其他
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021"
11423 条 记 录,以下是231-240 订阅
排序:
SceneGen: Learning to Generate Realistic Traffic Scenes
SceneGen: Learning to Generate Realistic Traffic Scenes
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tan, Shuhan Wong, Kelvin Wang, Shenlong Manivasagam, Sivabalan Ren, Mengye Urtasun, Raquel Uber Adv Technol Grp Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China Univ Toronto Toronto ON Canada
We consider the problem of generating realistic traffic scenes automatically. Existing methods typically insert actors into the scene according to a set of hand-crafted heuristics and are limited in their ability to m... 详细信息
来源: 评论
View-Guided Point Cloud Completion
View-Guided Point Cloud Completion
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Xuancheng Feng, Yutong Li, Siqi Zou, Changqing Wan, Hai Zhao, Xibin Guo, Yandong Gao, Yue Tsinghua Univ Sch Software KLISS BNRist Beijing Peoples R China Tsinghua Univ THUICBS Beijing Peoples R China Huawei Technol Canada Co Ltd Markham ON Canada OPPO Res Inst Beijing Peoples R China
This paper presents a view-guided solution for the task of point cloud completion. Unlike most existing methods directly inferring the missing points using shape priors, we address this task by introducing ViPC (view-... 详细信息
来源: 评论
FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation
FlowStep3D: Model Unrolling for Self-Supervised Scene Flow E...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kittenplon, Yair Eldar, Yonina C. Raviv, Dan Tel Aviv Univ Tel Aviv Israel Weizmann Inst Sci Rehovot Israel
Estimating the 3D motion of points in a scene, known as scene flow, is a core problem in computer vision. Traditional learning-based methods designed to learn end-to-end 3D flow often suffer from poor generalization. ... 详细信息
来源: 评论
Pedestrian and Ego-vehicle Trajectory Prediction from Monocular Camera
Pedestrian and Ego-vehicle Trajectory Prediction from Monocu...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Neumann, Lukas Vedaldi, Andrea Czech Tech Univ Fac Elect Engn Visual Recognit Grp Prague Czech Republic Univ Oxford Dept Engn Sci Visual Geometry Grp Oxford England
Predicting future pedestrian trajectory is a crucial component of autonomous driving systems, as recognizing critical situations based only on current pedestrian position may come too late for any meaningful correctiv... 详细信息
来源: 评论
Points as Queries: Weakly Semi-supervised Object Detection by Points
Points as Queries: Weakly Semi-supervised Object Detection b...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Liangyu Yang, Tong Zhang, Xiangyu Zhang, Wei Sun, Jian MEGVII Technol Beijing Peoples R China Fudan Univ Shanghai Peoples R China
We propose a novel point annotated setting for the weakly semi-supervised object detection task, in which the dataset comprises small fully annotated images and large weakly annotated images by points. It achieves a b... 详细信息
来源: 评论
Depth from Camera Motion and Object Detection
Depth from Camera Motion and Object Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Griffin, Brent A. Corso, Jason J. Univ Michigan Ann Arbor MI 48109 USA Stevens Inst Artificial Intelligence Hoboken NJ USA
This paper addresses the problem of learning to estimate the depth of detected objects given some measurement of camera motion (e.g., from robot kinematics or vehicle odometry). We achieve this by 1) designing a recur... 详细信息
来源: 评论
Isometric Multi-Shape Matching
Isometric Multi-Shape Matching
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gao, Maolin Laehner, Zorah Thunberg, Johan Cremers, Daniel Bernard, Florian Tech Univ Munich Munich Germany Halmstad Univ Halmstad Sweden Univ Siegen Siegen Germany
Finding correspondences between shapes is a fundamental problem in computer vision and graphics, which is relevant for many applications, including 3D reconstruction, object tracking, and style transfer. The vast majo... 详细信息
来源: 评论
DeepSurfels: Learning Online Appearance Fusion
DeepSurfels: Learning Online Appearance Fusion
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mihajlovic, Marko Weder, Silvan Pollefeys, Marc Oswald, Martin R. Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Microsoft Mixed Real Zurich Switzerland AI Zurich Lab Zurich Switzerland
We present DeepSurfels, a novel hybrid scene representation for geometry and appearance information. DeepSurfels combines explicit and neural building blocks to jointly encode geometry and appearance information. In c... 详细信息
来源: 评论
Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations
Continual Semantic Segmentation via Repulsion-Attraction of ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Michieli, Umberto Zanuttigh, Pietro Univ Padua Dept Informat Engn Padua Italy
Deep neural networks suffer from the major limitation of catastrophic forgetting old tasks when learning new ones. In this paper we focus on class incremental continual learning in semantic segmentation, where new cat... 详细信息
来源: 评论
Virtual Fully-Connected Layer: Training a Large-Scale Face recognition Dataset with Limited Computational Resources
Virtual Fully-Connected Layer: Training a Large-Scale Face R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Pengyu Wang, Biao Zhang, Lei Alibaba Grp Artificial Intelligence Ctr DAMO Acad Hangzhou Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China
Recently, deep face recognition has achieved significant progress because of Convolutional Neural Networks (CNNs) and large-scale datasets. However, training CNNs on a large-scale face recognition dataset with limited... 详细信息
来源: 评论